Log in

Thermal regimes of a counterflow reactor: a gas-liquid system

  • Kinetics and Mechanism of Chemical Reactions. Catalysis
  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

A counterflow reactor model for a system of two phases one of which involves an exothermic bimolecular reaction is considered. At a stationary temperature distribution in the reactor, there are high and low heating regions. For the adiabatic case, maximum heating is only possible at the bottom of the reactor. The maximum stationary temperature in the reactor decreases and shifts toward the top of the reactor as the intensity of heat exchange with the environment increases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Astarita, Mass Transfer with Chemical Reaction (Elsevier, Amsterdam, London, New York, 1967; Khimiya, Leningrad, 1971), p. 145.

    Google Scholar 

  2. E. Yu. Orlova, Chemistry and Technology of Brisant Explosives (Khimiya, Leningrad, 1973) [in Russian].

    Google Scholar 

  3. Technology of Ammonium Nitrate, Ed. by V. M. Olevskii (Khimiya, Moscow, 1978), p. 312 [in Russian].

    Google Scholar 

  4. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 6: Fluid Mechanics (Nauka, Moscow, 1986; Pergamon, New York, 1987), p. 100.

    Google Scholar 

  5. D. A. Frank-Kamenetskii, Diffusion and Heat Transfer in Chemical Kinetics (Nauka, Moscow, 1987) [in Russian].

    Google Scholar 

  6. Yu. P. Gupalo, A. D. Polyanin, and Yu. S. Ryazantsev, Mass and Heat Transfer between Reacting Particles and the Flow (Nauka, Moscow, 1985) [in Russian].

    Google Scholar 

  7. N. N. Kalitkin, Numerical Computation Methods (Nauka, Moscow, 1978) [in Russian].

    Google Scholar 

  8. N. N. Semenov, Zh. Russ. Fiz.-Khim. Obshch. 60, 241 (1928).

    Google Scholar 

  9. L. S. Pontryagin, Ordinary Differential Equations (Nauka, Moscow, 1965; Addison-Wesley, Reading, MA, 1962).

    Google Scholar 

  10. A. N. Tikhonov, Mat. Sb. 31, 575 (1952).

    Google Scholar 

  11. A. B. Vasil’eva and F. A. Butuzov, Asymptotic Expansion of Solutions to Singularly Perturbed Equations (Nauka, Moscow, 1973) [in Russian].

    Google Scholar 

  12. I. S. Lyubchenko, Dokl. Akad. Nauk SSSR 235, 1356 (1977).

    Google Scholar 

  13. A. G. Merzhanov, E. G. Zelikman, and V. G. Abramov, Dokl. Akad. Nauk SSSR 180, 639 (1968).

    Google Scholar 

  14. E. G. Zelikman, Fiz. Goreniya Vzryva, No. 4, 563 (1968)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. L. Korsunskii.

Additional information

Original Russian Text © E.V. Deyun, B.L. Korsunskii, N.G. Samoilenko, Yu.N. Finaeva, 2012, published in Khimicheskaya Fizika, 2012, Vol. 31, No. 1, pp. 33–37.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deyun, E.V., Korsunskii, B.L., Samoilenko, N.G. et al. Thermal regimes of a counterflow reactor: a gas-liquid system. Russ. J. Phys. Chem. B 6, 28–32 (2012). https://doi.org/10.1134/S1990793112010058

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793112010058

Keywords

Navigation