Log in

Assessment of the Effect of Age, Renal Function Status, and M-Cholinoblocker Biperidene Intake on Free Plasma Choline Concentrations

  • Published:
Biochemistry (Moscow), Supplement Series B: Biomedical Chemistry Aims and scope Submit manuscript

Abstract

The use of high-performance liquid chromatography in combination with tandem mass spectrometry (HPLC-MS/MS) provides a selective determination of free choline in blood plasma. The instability of the measurement results is due to the residual activity of phospholipases that promote the hydrolysis of phosphatidylcholine ex vivo. The use of EDTA as an anticoagulant and compliance with the cold regime (≤4°C) from blood sampling to the supply of deproteinized and diluted plasma for analysis ensures the accuracy of the analysis (standard deviation not higher than 15%) within the linear range (0.5–10) μg/mL or (5–96) µM. Using a validated method of choline determination in plasma, it was found that the concentration of choline in plasma was (10.0 ± 2.2) μM in a group of people 20–40 years old with no identified diseases (n = 30), while the plasma choline concentration within 90 min rose from the baseline value (8.9 ± 1.3) to the mean value (19.1 ± 4.3) μM and remained at this level during the entire observation period of 72 h in volunteers of the same age and also without identified diseases (n = 50) after a single administration of M-cholinoblocker biperiden at a dose of 2 mg. It has also been confirmed that acute renal failure and advanced age are associated with increased plasma free choline concentrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

REFERENCES

  1. Arias, N., Arboleya, S., Allison, J., Kaliszewska, A., Higarza, S.G., Gueimonde, M., and Arias, J.L., The relationship between choline bioavailability from diet, intestinal microbiota composition, and its modulation of human diseases, Nutrients, 2020, vol. 12, p. e2340. https://doi.org/10.3390/nu12082340

  2. Danne, O. and Möckel, M., Choline in acute coronary syndrome: An emerging biomarker with implications for the integrated assessment of plaque vulnerability, Expert Rev. Mol. Diagn., 2010, vol. 10, pp. 159–171. https://doi.org/10.1586/erm.10.2

    Article  CAS  PubMed  Google Scholar 

  3. Pan, X.F., Yang, J.J., Shu, X.O., Moore, S.C., Palmer, N.D., Guasch-Ferré, M., Herrington, D.M., Harada, S., Eliassen, H., Wang, T.J., Gerszten, R.E., Albanes, D., Tzoulaki, I., Karaman, I., Elliott, P., Zhu, H., Wagenknecht, L.E., Zheng, W., Cai, H., Cai, Q., Matthews, C.E., Menni, C., Meyer, K.A., Lipworth, L.P., Ose, J., Fornage M, Ulrich, C.M, and Yu, D., Associations of circulating choline and its related metabolites with cardiometabolic biomarkers: An international pooled analysis, Am. J. Clin. Nutr., 2021, vol. 114, pp. 893–906. https://doi.org/10.1093/ajcn/nqab152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Wu, G., Zhang, L., Li, T., Zuniga, A., Lo-paschuk, G.D., Li, L., Jacobs, R.L., and Vance, D.E., Choline supplementation promotes hepatic insulin resistance in phosphatidylethanolamine N-methyltransferase-deficient mice via increased glucagon action, J. Biol. Chem., 2013, vol. 288, pp. 837–847. https://doi.org/10.1074/jbc.M112.415117

    Article  CAS  PubMed  Google Scholar 

  5. Dibaba, D.T., Johnson, K.C., Kucharska-New-ton A.M., Meyer, K., Zeisel, S.H., and Bidulescu, A., The association of dietary choline and betaine with the risk of type 2 diabetes: The atherosclerosis risk in communities (ARIC) study, Diabetes Care, 2020, vol. 43, pp. 2840–2846. https://doi.org/10.2337/dc20-0733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Van Wijk, N., Watkins, C., Böhlke, M., Maher, T., Hageman, R., Kamphuis, P., and Wurtman, R., Plasma choline concentration varies with different dietary levels of vitamins B6, B12 and folic acid in rats maintained on choline-adequate diets, Br. J. Nutr., 2012, vol. 107, pp. 1408–1412. https://doi.org/10.1017/S0007114511004570

    Article  CAS  PubMed  Google Scholar 

  7. Siddiqui, A., Shah, Z., Jahan, R.N., Othman, I., and Kumari, Y., Mechanistic role of boswellic acids in Alzheimer’s disease: Emphasis on anti-inflammatory properties, Biomed. Pharmacother., 2021, vol. 144, p. 112250. https://doi.org/10.1016/J.BIOPHA.2021.112250

    Article  CAS  PubMed  Google Scholar 

  8. Colovic, M.B., Krstic, D.Z., Lazarevic-Pasti, T.D., Bondzic, A.M., and Vasic, V.M., Acetylcholinesterase inhibitors: Pharmacology and toxicology, Curr. Neuropharmacol., 2013, vol. 11, pp. 315–335. https://doi.org/10.2174/1570159x11311030006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Mujica, M., Lewis, E., Jacobs, R., Letourneau, N., Bell, R., Field, C., and Lamers, Y., Plasma free choline concentration did not reflect dietary choline intake in early and late pregnancy: Findings from the APrON study, Curr. Dev. Nutr., 2020, vol. 29, p. 1825. https://doi.org/10.1093/cdn/nzaa067_052

    Article  Google Scholar 

  10. Choline—Dietary Reference Intakes for Thiamin, Riboflavin, Niacin, Vitamin B6, Folate, Vitamin B12, Pantothenic Acid, Biotin, and Choline. https://www. ncbi.nlm.nih.gov/books/NBK114308/. Cited October 2, 2023.

  11. Holm, P.I., Ueland, P.M., Kvalheim, G., and Lien, E.A., Determination of choline, betaine, and dimethylglycine in plasma by a high-throughput method based on normal-phase chromatography-tandem mass spectrometry, Clin. Chem., 2003, vol. 49, pp. 286–294. https://doi.org/10.1373/49.2.286

    Article  CAS  PubMed  Google Scholar 

  12. Acara, M., Rennick, B., LaGraff, S., and Schroeder, E.T., Effect of renal transplantation on the levels of choline in the plasma of uremic humans, Nephron, 1983, vol. 35, pp. 241–243. https://doi.org/10.1159/000183089

    Article  CAS  PubMed  Google Scholar 

  13. Mlodzik-Czyzewska, M.A., Malinowska, A.M., Szwengiel, A., and Chmurzynska, A., Associations of plasma betaine, plasma choline, choline intake, and MTHFR polymorphism (rs1801133) with anthropometric parameters of healthy adults are sex-dependent, J. Hum. Nutr. Diet, 2002, vol. 35, pp. 701–712. https://doi.org/10.1111/jhn.13046

    Article  Google Scholar 

  14. Konstantinova, S.V., Tell, G.S., Vollset, S.E., Nygård, O., Bleie, Ø, and Ueland, P.M., Divergent associations of plasma choline and betaine with components of metabolic syndrome in middle age and elderly men and women, J. Nutr., 2008, vol. 138, pp. 914–920. https://doi.org/10.1093/jn/138.5.914

    Article  CAS  PubMed  Google Scholar 

  15. Li, Z., Agellon, L.B., and Vance, D.E., Choline redistribution during adaptation to choline deprivation, J. Biol. Chem., 2007, vol. 282, pp. 10283–10289. https://doi.org/10.1074/jbc.M611726200

    Article  CAS  PubMed  Google Scholar 

  16. Zeisel, S.H., Phosphatidylcholine: Endogenous precursor of choline, in Lecithin, Boston: Springer, 1987, pp. 107–120.

    Google Scholar 

  17. Hirabayashi, T., Kawaguchi, M., Harada, S., Mouri, M., Takamiya, R., Miki, Y., Sato, H., Taketomi, Y., Yokoyama, K., Kobayashi, T., Toku-oka, S.M., Kita, Y., Yoda, E., Hara, S., Mikami, K., Nishito, Y., Kikuchi, N., Nakata, R., Kaneko, M., and Murakami, M., Hepatic phosphatidylcholine catabolism driven by PNPLA7 and PNPLA8 supplies endogenous choline to replenish the methionine cycle with methyl groups, Cell Rep., 2023, vol. 42, p. 111940. https://doi.org/10.1016/j.celrep.2022.111940

    Article  CAS  PubMed  Google Scholar 

  18. Harada, S., Taketomi, Y., Aiba, T., Kawaguchi, M., Hirabayashi, T., Uranbileg, B., Kurano, M., Yatomi, Y., and Murakami, M., The lysophospholipase PNPLA7 controls hepatic choline and methionine metabolism, Biomolecules, 2023, vol. 13, p. 471. https://doi.org/10.3390/biom13030471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. General Pharmacopoeial Monograph Validation of Analytical Methods. OFS.1.1.0012.15, State Pharmacopoeia of the Russian Federation, 13th ed., vol. 1, Guideline on Bioanalytical Method Validation, EMEA/CHMP/ EWP192217/2009, 2011.

  20. Decision of the EEC Council no. 85 “Rules for Conducting Bioequivalence Studies of Medicinal Products within the Framework of the Eurasian Economic Union” dated November 3, 2016.

  21. Unguryanu, T.N. and Grzhibovskii, A.M., Comparing three or more independent groups using the nonparametric Kruskal–Wallis test in stata program, Ekol. Chel., 2014, vol. 6, pp. 55–58.

    Google Scholar 

  22. Yue, B., Pattison, E., Roberts, W.L., Rockwood, A.L., Danne, O., Lueders, C., and Möckel, M., Choline in whole blood and plasma: Sample preparation and stability, Clin. Chem., 2008, vol. 54, pp. 590–593. https://doi.org/10.1373/clinchem.2007.094201

    Article  CAS  PubMed  Google Scholar 

  23. Sotelo-Orozco, J., Chen, S.-Y., Hertz-Picciotto, I., and Slupsky, C.M., A comparison of serum and plasma blood collection tubes for the integration of epidemiological and metabolomics data, Front. Mol. Biosci., 2021, vol. 8, p. 682134, https://doi.org/10.3389/fmolb.2021.682134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Rennick, B., Acara, M., Hysert, P., and Mookerjee, B., Choline loss during hemodialysis: Homeostatic control of plasma choline concentrations, Kidney Int., 1976, vol. 10, pp. 329–335. https://doi.org/10.1038/ki.1976.116

    Article  CAS  PubMed  Google Scholar 

  25. Guo, F., Dai, Q., Zeng, X., Liu, Y., Tan, Z., Zhang, H., and Ouyang, D., Renal function is associated with plasma trimethylamine-N-oxide, choline, L-carnitine and betaine: A pilot study, Int. Urol. Nephrol., 2020, vol. 53, pp. 539–551. https://doi.org/10.1007/s11255-020-02632-6

    Article  CAS  PubMed  Google Scholar 

  26. Ilcol, Y.O., Dilek, K., Yurtkuran, M., and Ulus, I.H., Changes of plasma free choline and choline-containing compounds’ concentrations and choline loss during hemodialysis in ESRD patients, Clin. Biochem., 2002, vol. 35, pp. 233–239. https://doi.org/10.1016/s0009-9120(02)00298-9

    Article  CAS  PubMed  Google Scholar 

  27. Ragi, N., Pallerla, P., Babi Reddy Gari, A.R., Lingampelly, S.S., Ketavarapu, V., Addipilli, R., Chirra, N., Kantevari, S., Yadla, M., and Sripadi, P., Assessment of uremic toxins in advanced chronic kidney disease patients on maintenance hemodialysis by LC-ESI-MS/MS, Metabolomics, 2023, vol. 19, p. 14. https://doi.org/10.1007/s11306-023-01978-z

    Article  CAS  PubMed  Google Scholar 

  28. Yamaguchi, Y., Zampino, M., Moaddel, R., Chen, T.K., Tian, Q., Ferrucci, L., and Semba, R.D., Plasma metabolites associated with chronic kidney disease and renal function in adults from the Baltimore Longitudinal Study of Aging, Metabolomics, 2021, vol. 17, p. 9. https://doi.org/10.1007/s11306-020-01762-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Cho, C.E., Aardema, N.D.J., Bunnell, M.L., Larson, D.P., Aguilar, S.S., Bergeson, J.R., Malysheva, O.V., Caudill, M.A., and Lefevre, M., Effect of choline forms and gut microbiota composition on trimethylamine-N-oxide response in healthy men, Nutrients, 2020, vol. 12, p. 2220. https://doi.org/10.3390/nu12082220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Mafra, D., Cardozo, L., Ribeiro-Alves, M., Bergmane, P., Shiels, P.G., and Stenvinkel, P., Short report: Choline plasma levels are related to Nrf2 transcriptional expression in chronic kidney disease?, Clin. Nutr., 2022, vol. 50, pp. 318–321. https://doi.org/10.1016/j.clnesp.2022.06.008

    Article  CAS  Google Scholar 

  31. Świątkiewicz, M. and Grieb, P., Citicoline for supporting memory in aging humans, Aging Dis., 2023, vol. 14, pp. 1184–1195. https://doi.org/10.14336/AD.2022.0913

  32. Barnes, M., McAfee, A., Bonham, M., McSorley, E., Wallace, J., Myers, G., and Strain, J., Age and sex differences in plasma homocysteine, choline and betaine status in Seychellois children and young adults, Proc. Nutr. Soc., 2010, vol. 69, p. E381. https://doi.org/10.1017/S0029665110002429

    Article  Google Scholar 

  33. Roe, A.J., Zhang, S., Bhadelia, R.A., Johnson, E.J., Lichtenstein, A.H., Rogers, G.T., Rosenberg, I.H., Smith, C.E., Zeisel, S.H., and Scott, T.M., Choline and its metabolites are differently associated with cardiometabolic risk factors, history of cardiovascular disease, and MRI-documented cerebrovascular disease in older adults, Am. J. Clin. Nutr., 2017, vol. 105, pp. 1283–1290. https://doi.org/10.3945/ajcn.116.137158

    Article  CAS  Google Scholar 

  34. Nurk, E., Refsum, H., Bjelland, I., Drevon, C.A., Tell, G.S., Ueland, P.M., Vollset, S.E., Engedal, K., Nygaard, H.A., and Smith, D.A., Plasma free choline, betaine and cognitive performance: The Hordaland Health Study, Br. J. Nutr., 2013, vol. 109, pp. 511–519. https://doi.org/10.1017/S0007114512001249

    Article  CAS  PubMed  Google Scholar 

  35. Sharma, H.S., Blood-brain barrier in Alzheimers disease induced brain pathology and neuroprotection by nanodelivery of cerebrolysin, Neurosci. Neuropharmacol., 2017, vol. 3, no. 2 (suppl.), p. 26. https://doi.org/10.4172/2469-9780-c1-004

  36. Bakker, C., van Esdonk, M.J., Stuurman, R.F.E., Borghans, L.G.J.M., de Kam, M.L., van Gerven, J.M.A., and Groeneveld, G.J., Biperiden challenge model in healthy elderly as proof-of-pharmacology tool: A randomized, placebo-controlled trial, J. Clin. Pharmacol., 2021, vol. 61, pp. 1466–1478. https://doi.org/10.1002/jcph.1913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Beckmann, H. and Moises, H.W., The cholinolytic biperiden in depression, Arch. Psychiatr. Nervenkrankh., 1982, vol. 231, pp. 213–220. https://doi.org/10.1007/bf00343291

    Article  CAS  Google Scholar 

  38. Wezenberg, E., Verkes, R.J., Sabbe, B.G.C., Ruigt, G.S.F., and Hulstijn, W., Modulation of memory and visuospatial processes by biperiden and rivastigmine in elderly healthy subjects, Psychopharmacology, 2005, vol. 181, pp. 582–594. https://doi.org/10.1007/s00213-005-0083-7

    Article  CAS  PubMed  Google Scholar 

  39. Kassa, J. and Fusek, J., The influence of anticholinergic drug selection on the efficacy of antidotal treatment of soman-poisoned rats, Toxicology, 2000, vol. 154, pp. 67–73. https://doi.org/10.1016/s0300-483x(00)00322-x

    Article  CAS  PubMed  Google Scholar 

  40. Kostelnik, A., Cegan, A., and Pohanka, M., Anti-Parkinson drug biperiden inhibits enzyme acetylcholinesterase, BioMed Res. Int., 2017, p. 2532764. https://doi.org/10.1155/2017/2532764

  41. Vingerhoets, C., Bakker, G., Schrantee, A., van der Pluijm, M., Bloemen, O.J.N., Reneman, L., Caan, M., Booij, J., and van Amelsvoort, T.A.M.J., Influence of muscarinic M1 receptor antagonism on brain choline levels and functional connectivity in medication-free subjects with psychosis: A placebo controlled, cross-over study, Psychiatry Res., Neuroimaging, 2019, vol. 30, pp. 5–13. https://doi.org/10.1016/j.pscychresns.2019.06.005

    Article  Google Scholar 

  42. Uhl, I., Mavrogiorgou, P., Norra, C., Forstreuter, F., Scheel, M., Witthaus, H., Özgürdal, S., Gudlowski, Y., Bohner, G., Gallinat, J., Klingebiel, R., Heinz, A., and Juckel, G., 1HMR spectroscopy in ultra-high risk and first episode stages of schizophrenia, J. Psychiatr. Res., 2011, vol. 45, pp. 1135–1139. https://doi.org/10.1016/j.jpsychires.2011.02.004

    Article  PubMed  Google Scholar 

  43. Zhong, C., Lu, Z., Che, B., Qian, S., Zheng, X., Wang, A., Bu, X., Zhang, J., Ju, Z., Xu, T., and Zhang, Y., Choline pathway nutrients and metabolites and cognitive impairment after acute ischemic stroke, Stroke, 2021, vol. 52, pp. 887–895. https://doi.org/10.1161/strokeaha.120.031903

    Article  CAS  PubMed  Google Scholar 

  44. Parnetti, L., Mignini, F., Tomassoni, D., Traini, E., and Amenta, F., Cholinergic precursors in the treatment of cognitive impairment of vascular origin: Ineffective approaches or need for re-evaluation?, J. Neurol. Sci., 2007, vol. 257, pp. 264–269. https://doi.org/10.1016/j.jns.2007.01.043

    Article  CAS  PubMed  Google Scholar 

  45. Pozzi, F.E., Conti, E., Appollonio, I., Ferrarese, C., and Tremolizzo, L., Predictors of response to acetylcholinesterase inhibitors in dementia: A systematic review, Front. Neurosci., 2022, vol. 16, p. 998224. https://doi.org/10.3389/fnins.2022.998224

    Article  PubMed  PubMed Central  Google Scholar 

  46. Zhu, Z., Zhang, L., Cui, Y., Li, M., Ren, R., Li, G., Sun, X., and Li, Q., Functional compensation and mechanism of choline acetyltransferase in the treatment of cognitive deficits in aged dementia mice, Neuroscience, 2020, vol. 442, pp. 41–53. https://doi.org/10.1016/j.neuroscience.2020.05.016

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation (project no. 22-15-00155).

Author information

Authors and Affiliations

Authors

Contributions

Setting the problem and conducting research was carried out by E.I. Savelieva and M.A. Leninsky, writing and editing the manuscript was performed by E.I. Savelieva, N.V. Goncharov, and M.A. Leninsky, and illustrations are by M.A. Leninsky.

Corresponding author

Correspondence to E. I. Savelieva.

Ethics declarations

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

This research does not involve studies with human or animal subjects. No biospecimens were collected for this investigation. Blood plasma samples used in this study were sourced from a long-term storage bank and anonymized, excluding the access to personal data.

CONFLICT OF INTEREST

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abbreviations: HPLC-MS/MS, high-performance liquid chromatography combined with tandem mass spectrometry; EDTA, ethylenediaminetetraacetate; SD, standard deviation; MRM, multiple reaction monitoring; Nrf2, transcription factor; rt-PCR, real-time polymerase chain reaction method.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Savelieva, E.I., Leninsky, M.A. & Goncharov, N.V. Assessment of the Effect of Age, Renal Function Status, and M-Cholinoblocker Biperidene Intake on Free Plasma Choline Concentrations. Biochem. Moscow Suppl. Ser. B 17, 126–135 (2023). https://doi.org/10.1134/S1990750824600043

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990750824600043

Keywords:

Navigation