Log in

The Effect of Sulfur-Containing Compounds on the Quinoid Process of Adrenaline Autoxidation; Potential Neuroprotectors

  • Published:
Biochemistry (Moscow), Supplement Series B: Biomedical Chemistry Aims and scope Submit manuscript

Abstrac

t—The superoxide-generating reaction of adrenaline autoxidation in an alkaline medium, used in vitro to identify the antioxidant properties of various compounds, simulates the complex multistep process of quinoid oxidation of catecholamines (CA) in the body. Sulfur-containing cysteine (Cys) and reduced glutathione (GSH), as well as oxidized glutathione (GSSG), have been shown to inhibit this process. The studied substances considered as inhibitors of quinoid oxidation have been also evaluated as antioxidants. The IC50 values for Cys and GSH were close to 7.5 μM. Inhibition by GSSG was weaker and represented approximately 50–70% of Cys and GSH inhibitory activity. The other sulfur-containing compounds that differ in chemical structure, the amino acids taurine and methionine were ineffective. The interest in this model and the search for effective compounds acting on this reaction is associated with one of the mechanisms of the etiopathogenesis of Parkinson’s disease (PD) discussed in the literature; it is related to impairments of biochemical transformations of dopamine, particularly its quinoid oxidation. Cys, GSH and GSSG in the model system inhibit quinoid oxidation of adrenaline as well as inhibition of superoxide (\({\text{O}}_{2}^{{\centerdot - }}\)) formation. Experiments with the superoxide-generating enzymatic reaction of xanthine and xanthine oxidase, which chemistry is different and not related to the formation of quinoid metabolites, showed that the studied substances did not inhibit \({\text{O}}_{2}^{{\centerdot - }}\) formation in this model. Thus, in this study we have shown that the biologically active sulfur-containing compounds Cys, GSH, and GSSG are specific inhibitors of quinoid oxidation of CA; it is likely that they may act as neuroprotectors. It is suggested that these compounds may be useful in the treatment and prevention of PD by activating their biosynthesis in the body.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Bindoli, A., Rigobello, M.P., and Galzigna, L., Toxicol. Lett., 1989, vol. 48, pp. 3−20.

    Article  CAS  Google Scholar 

  2. Marques, F., Duarte, R.O., Moura, J.J., and Bicho, M.P., Biopl. Signals, 1996, vol. 5, pp. 275−282.

    Article  CAS  Google Scholar 

  3. Bindoli, A., Rigobello, M.P., and Deeble, D.J., Free Radic. Biol. Med., 1992, vol. 13, pp. 391−405.

    Article  CAS  Google Scholar 

  4. Sirota, T.V., Biomed. Khim., 2012, vol. 58, no. 1, pp. 77−87.

    Article  CAS  Google Scholar 

  5. Sirota, T.V., Biomed. Khim., 2013, vol. 59, no. 4, pp. 399−410.

    Article  CAS  Google Scholar 

  6. Sirota, T.V., Biomed. Khim., 2015, vol. 61, no. 1, pp. 115−124.

    Article  CAS  Google Scholar 

  7. Smythies, J. and Galzigna, L., Biochim. Biophys. Acta, 1998, vol. 1380, pp. 159−162.

    Article  CAS  Google Scholar 

  8. Muñoz, P., Huenchuguala, S., Paris, I., and Segura-Aguilar, J., Parkinson’s Dis., 2012, vol. 2012, 920953. https://doi.org/10.1155/2012/920953

    Article  CAS  Google Scholar 

  9. Men’shikov, V.V. and Bol’shakova, T.D., in Adrenalin i noradrenalin (Adrenaline and Noradrenaline), Moscow: Nauka, 1964, pp. 284−293.

  10. Rump, A.F., Schierholz, J., Rösen, R., Güttler, K., and Klaus, W., Arzneimittelforschung, 2001, vol. 51, pp. 964−970.

    CAS  PubMed  Google Scholar 

  11. Costa, V.M., Silva, R., Ferreira, L.M., Branco, P.S., Carvalho, F., Bastos, M.L., Carvalho, R.A., Carvalho, M., and Remião, F., Chem. Res. Toxicol., 2007, vol. 20, pp. 1183−1191.

    Article  CAS  Google Scholar 

  12. Kolpakov, V.G., Korsakov Zh. Nevropatol. Psykhiatr., 1974, vol. 74, pp. 1254−1263.

    CAS  Google Scholar 

  13. Smythies, J., Neurotox. Res., 2002, vol. 4, no. 2, pp. 147−150.

    Article  Google Scholar 

  14. Smythies, J., Antioxid. Redox. Signal., 2000, vol. 2, no. 3, pp. 575−583.

    Article  CAS  Google Scholar 

  15. Segura-Aguilar, J., Paris, I., Muñoz, P., Ferrari, E., Zecca, L., and Zucca, F.A., J. Neurochem., 2014, vol. 129, no. 6, pp. 898−915. https://doi.org/10.1111/jnc.12686

    Article  CAS  PubMed  Google Scholar 

  16. Smythies, J., De Iuliis, A., Zanatta, L., and Galzigna, L., Neurotox. Res., 2002, vol. 4, no. 1, pp. 77−81.

    Article  CAS  Google Scholar 

  17. Santos, C.C., Araújo, F.M., Ferreira, R.S., Silva, V.B., Silva, J.H.C., Grangeiro, M.S., Soares, É.N., Pereira, L., Souza, C.S., Costa, S.L., Segura-Aguilar, J., and Silva, V.D.A., Toxicology In Vitro, 2017, vol. 42, pp. 54−60. https://doi.org/10.1016/j.tiv.2017.04.004

    Article  CAS  PubMed  Google Scholar 

  18. Segura-Aguilar, J. and Huenchuguala, S,. Front Neurosci., 2018, vol. 12, 106. eCollection 2018https://doi.org/10.3389/fnins.2018.00106

  19. Jenner, P., Dexter, D.T., Sian, J., Schapira, A.H.V., and Marsden, F.R.S., Ann. Neurol., 1992, vol. 32, pp. 82−87.

    Article  Google Scholar 

  20. Dubinina, E.E., Produkti metabolisma kisloroda v funkzional’noi aktivnosti kletok (Products of Oxygen Metabolism in Functional Activity of Cells), St. Petersburg, 2006, pp. 111−135.

  21. Misra, H.P. and Fridovich, I., J. Biol. Chem., 1972, vol. 247, pp. 3170−3175.

    CAS  PubMed  Google Scholar 

  22. Sirota, T.V., Rus. patent no. 214674, Byull. Isobret., 2000, no. 2.

  23. Sirota, T.V., Vopr. Med. Khim., 1999, vol. 45, no. 3, pp. 263−272.

    CAS  PubMed  Google Scholar 

  24. Sirota, T.V., Biomed. Khim., 2016, vol. 62, no. 6, pp. 650−655.

    Article  CAS  Google Scholar 

  25. Kulinsky, V.I. and Kolesnichenko, L.S., Uspechi Biol. Khimii, 1990, vol. 31, pp. 157−179.

    Google Scholar 

  26. Zenkov, N.K., Lankin, V.Z., and Men’shchiko-va, E.B., Okislitelniy stress (Oxidative Stress), Moscow: Maik Nauka/Interperiodica, 2001, pp. 154−158.

    Google Scholar 

  27. Men’shchikova, E.B, Lankin, V.Z., Zenkov, N.K., Bondar,’ I.A., Krugovich, N.F., and Trufakin, V.A. (2006) Okislitelniy stress. Prooxidanty i antioxidanty (Oxidative Stress. Prooxidants and Antioxidants) Moscow: Firma Slovo, 2006, pp. 393−414.

    Google Scholar 

  28. Bannon, N.J., Goedert, M., and Williams, B., Biochem. Pharmacol., 1984, vol. 33, no. 17, pp. 2697−2698.

    Article  CAS  Google Scholar 

  29. Perry, T.L., Godin, D.V., and Hansen, S., Neurosci. Lett., 1982, vol. 33, no. 3, pp. 305−310.

    Article  CAS  Google Scholar 

  30. Beauchamp, C. and Fridovich, I., Anal. Biochem., 1971, vol. 44, pp. 276−287.

    Article  CAS  Google Scholar 

  31. Sirota, T.V., Lyamina, N.E., and Weisfeld, L.I., Biofizika, 2017, vol. 62, no. 5, pp. 846−851.

    Google Scholar 

  32. Sirota, T.V., Biofizika, 2016, vol. 61, no. 1, pp. 22−27.

    Google Scholar 

  33. Lebedev, A.V., Ivanova, M.V., Timoshin, A.A., and Ruuge, E.K., Biomed. Khim., 2008, vol. 54, no. 6, pp. 687−695.

    CAS  PubMed  Google Scholar 

  34. Jomova, K. and Valko, M., Toxicology, 2011, vol. 283, nos. 2−3, pp. 65−87.

    Article  CAS  Google Scholar 

  35. Herrera-Soto, A., Díaz-Veliz, G., Mora, S., Muñoz, P., Henny, P., Steinbusc, H.W.M., and Segura-Aguilar, J., Neurotox. Res., 2017, vol. 32, no. 1, pp. 134−140. https://doi.org/10.1007/s12640-017-9719-8

    Article  CAS  PubMed  Google Scholar 

  36. Huenchuguala, S., Muñoz, P., Graumann, R., Paris, I., and Segura-Aguilar, J., Neurotoxicology, 2016, vol. 55, pp. 10−12. https://doi.org/10.1016/j.neuro.2016.04.014

    Article  CAS  PubMed  Google Scholar 

  37. Rushworth, G.F. and Megson, I.L., Pharmacol. Ther., 2014, vol. 141, no. 2, pp. 150−159. https://doi.org/10.1016/j.pharmthera.2013.09.006

    Article  CAS  PubMed  Google Scholar 

  38. Martínez-Banaclocha, M.A., Med. Hypotheses, 2012, vol. 79, no. 1, pp. 8−12.

    Article  Google Scholar 

  39. Goldstein, D.S., **smaa, Y., Sullivan, P., Sharabi, Y., Neurochem. Res., 2017, vol. 42, no. 11, pp. 3289−3295. https://doi.org/10.1007/s11064-017-2371-0

    Article  CAS  PubMed  Google Scholar 

  40. Coles, L.D., Tuite, P.J., Öz, G., Mishra, U.R., Kartha, R.V., Sullivan, K.M., Cloyd, J.C., and Terpstra, M., J. Clin. Pharmacol., 2018, vol. 58, no. 2, pp. 158−167. https://doi.org/10.1002/jcph.1008

    Article  CAS  PubMed  Google Scholar 

  41. https://natureweight.ru/glutation/

  42. Izumi, Y., Yakugaku Zasshi, 2013, vol. 133, no. 9, pp. 983−988.

    Article  CAS  Google Scholar 

  43. Zenkov, N.K., Men’shchikova, E.B., and Tkachev, V.O., Biochemistry (Moscow), 2013, vol. 78, no. 1, pp. 27−47.

    Google Scholar 

  44. Lee, J.A., Son, H.J., Choi, J.W., Kim, J., Han, S.H., Shin, N., Kim, J.H., Kim, S.J., Heo, J.Y., Kim, D.J., Park, K.D., and Hwang, O., Neurochem. Int., 2018, vol. 112, pp. 96−107. https://doi.org/10.1016/j.neuint.2017.11.006

    Article  CAS  PubMed  Google Scholar 

  45. Tarazi, F.I., Sahli, Z.T., Wolny, M., and Mousa, S.A., Pharmacol. Ther., 2014, vol. 144, no. 2, pp. 123−133. https://doi.org/10.1016/j.pharmthera.2014.05.010

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

The author is grateful to N.E. Lyamina for technical assistance in this study.

Funding

This work was partially supported by the Agreement 03/2018-ACS of February 2, 2018.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. V. Sirota.

Ethics declarations

This article does not contain any research involving humans or using animals as research objects.

The author declares no conflict of interest.

Additional information

Translated by A. Medvedev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sirota, T.V. The Effect of Sulfur-Containing Compounds on the Quinoid Process of Adrenaline Autoxidation; Potential Neuroprotectors. Biochem. Moscow Suppl. Ser. B 14, 62–69 (2020). https://doi.org/10.1134/S199075082001014X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S199075082001014X

Keywords

Navigation