Log in

Molecular Model of Norfloxacin Translocation through Yersinia pseudotuberculosis Porin OmpF Channel: Electrophysiological and Molecular Modeling Study

  • Published:
Biochemistry (Moscow), Supplement Series A: Membrane and Cell Biology Aims and scope

Abstract

The interaction of the Yersinia pseudotuberculosis porin OmpF (YpOmpF) with the fluoroquinolone antibiotic norfloxacin (Nf) and its derivatives (mono- and dihydrochloride) was studied using the bilayer lipid membrane (BLM) method, molecular modeling, and antibacterial activity testing. An asymmetric behavior of the Nf charged molecules was found: NfH+1 and Nf2H+2 moved through the YpOmpF channel, depending on the membrane voltage and on the side where the antibiotic was added. The electrophysiological data were confirmed by computational modeling. For charged forms of the antibiotic, the presence of two peripheral high-affinity binding sites (NBS1 and NBS2), as well as an asymmetric current blocking site (NBS3) near the channel constriction zone were detected. The NBS1 site located near the channel mouth has almost the same affinity for both charged forms of Nf, while the localization of the more energetically favorable NBS2 site for the two salt forms of the antibiotic differs significantly. Nf has only one binding site near the constriction zone, which is a cluster of sites with a lower overall affinity compared to the peripheral binding sites mentioned above. Slight differences were found in the antibacterial activity of the three forms of Nf, which is likely due to their different charge states and, accordingly, different permeability and/or ability to bind within the YpOmpF channel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

REFERENCES

  1. Ghai I., Ghai S. 2017. Infection and drug resistance exploring bacterial outer membrane barrier to combat bad bugs. Infection and Drug Resistance. 10, 261–273. https://doi.org/10.2147/IDR.S144299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Scorciapino M.A., Acosta-Gutierrez S., Benkerrou D., D’Agostino T., Malloci G.,Samanta S., Bodrenko I., Ceccarelli M. 2017. Rationalizing the permeation of polar antibiotics into Gram-negative bacteria. J. Phys. Condens. Matter. 29 (11), 113001. https://doi.org/10.1088/1361-648X/aa543b

    Article  PubMed  Google Scholar 

  3. Cowan S.W., Garavito R.M., Jansonius J.N., Jenkins J.A., Karlsson R., König N., Pai E.F., Pauptit R.A., Rizkallah P.J., Rosenbusch J.P., Rummel G., Schirmer T. 1995. The structure of OmpF porin in a tetragonal crystal form. Structure. 3 (10), 1041–1050. https://doi.org/10.1016/S0969-2126(01)00240-4

    Article  CAS  PubMed  Google Scholar 

  4. Baslé A., Rummel G., Storici P., Rosenbusch J.P., Schirmer T. 2006. Crystal structure of osmoporin OmpC from E. coli at 2.0 Å. J. Mol. Biol. 362 (5), 933–942. https://doi.org/10.1016/j.jmb.2006.08.002

    Article  CAS  PubMed  Google Scholar 

  5. Acosta-Gutiérrez S., Bodrenko I., Scorciapino M.A., Ceccarelli M. 2016. Macroscopic electric field inside water-filled biological nanopores. Phys. Chem. Chem. Phys. 18 (13), 8855–8864. https://doi.org/10.1039/c5cp07902k

    Article  PubMed  Google Scholar 

  6. Im W., Roux B. 2002. Ion permeation and selectivity of OmpF porin: A theoretical study based on molecular dynamics, Brownian dynamics, and continuum electrodiffusion theory. J. Mol. Biol. 322 (4), 851–869. https://doi.org/10.1016/S0022-2836(02)00778-7

    Article  CAS  PubMed  Google Scholar 

  7. Bredin J., Saint N., Malléa M., Dé E., Molle G., Pagès J.M., Simonet V. 2002. Alteration of pore properties of Escherichia coli OmpF induced by mutation of key residues in anti-loop 3 region. Biochem. J. 363 (3), 521–528. https://doi.org/10.1042/0264-6021:3630521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Yoshimura F., Nikaido H. 1985. Diffusion of beta-lactam antibiotics through the porin channels of Escherichia coli K-12. Antimicrob. Agents Chemother. 27 (1), 84–92. https://doi.org/10.1128/AAC.27.1.84

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Pagès J.M., James C.E., Winterhalter M. 2008. The porin and the permeating antibiotic: A selective diffusion barrier in Gram-negative bacteria. Nat. Rev. Microbiol. 6 (12), 893–903. https://doi.org/10.1038/nrmicro1994

    Article  CAS  PubMed  Google Scholar 

  10. Choi U., Lee C.R. 2019. Distinct roles of outer membrane porins in antibiotic resistance and membrane integrity in Escherichia coli. Front. Microbiol. 10, 953. https://doi.org/10.3389/fmicb.2019.00953

    Article  PubMed  PubMed Central  Google Scholar 

  11. James C.E., Mahendran K.R., Molitor A., Bolla J.M., Bessonov A.N., Winterhalter M., Pagès J.M. 2009. How β-lactam antibiotics enter bacteria: A dialogue with the porins. PLoS One. 4 (5), e5453. https://doi.org/10.1371/journal.pone.0005453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Acosta-Gutiérrez S., Ferrara L., Pathania M., Masi M., Wang J., Bodrenko I., Zahn M., Winterhalter M., Stavenger R.A., Pagès J.M., Naismith J.H., van den Berg B., Page M., Ceccarelli M. 2018. Getting drugs into gram-negative bacteria: Rational rules for permeation through general porins. ACS Infect. Dis. 4 (10), 1487–1498. https://doi.org/10.1021/acsinfecdis.8b00108

    Article  CAS  PubMed  Google Scholar 

  13. Lou H., Chen M., Black S.S., Bushell S.R., Ceccarelli M., Mach T., Beis K., Low A.S., Bamford V.A., Booth I.R., Bayley H., Naismith J.H. 2011. Altered antibiotic transport in OmpC mutants isolated from a series of clinical strains of multi-drug resistant E. coli. PLoS One. 6 (10), e25825. https://doi.org/10.1371/journal.pone.0025825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ziervogel B.K., Roux B. 2013. The binding of antibiotics in OmpF porin. Structure. 21 (1), 76–87. https://doi.org/10.1016/j.str.2012.10.014

    Article  CAS  PubMed  Google Scholar 

  15. Sugawara E., Kojima S., Nikaido H. 2016. Klebsiella pneumoniae major porins OmpK35 and OmpK36 allow more efficient diffusion of β-lactams than their Escherichia coli homologs OmpF and OmpC. J. Bacteriol. 198 (23), 3200–3208. https://doi.org/10.1128/JB.00590-16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Moya-Torres A., Mulvey M.R., Kumar A., Oresnik I.J., Brassinga A.K.C. 2014. The lack of OmpF, but not OmpC, contributes to increased antibiotic resistance in Serratia marcescens. Microbiol. 160 (9), 1882–1892. https://doi.org/10.1099/mic.0.081166-0

    Article  CAS  Google Scholar 

  17. Okamoto K., Gotoh N., Nishino T. 2001. Pseudomonas aeruginosa reveals high intrinsic resistance to penem antibiotics: Penem resistance mechanisms and their interplay. Antimicrob. Agents Chemother. 45 (7), 1964–1971. https://doi.org/10.1128/AAC.45.7.1964-1971.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bornet C., Davin-Regli A., Bosi C., Pages J.M., Bollet C. 2000. Imipenem resistance of Enterobacter aerogenes mediated by outer membrane permeability. J. Clin. Microbiol. 38 (3), 1048–1052. https://doi.org/10.1128/jcm.38.3.1048-1052.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Mortimer P.G.S., Piddok L.J.V. 1993. The accumulation of five antibacterial agents in porin-deficient mutants of Escherichia coli. J. Antimicrob. Chemother. 32 (2), 195–213. https://doi.org/10.1093/jac/32.2.195

    Article  CAS  PubMed  Google Scholar 

  20. Mahendran K.R., Kreir M., Weingart H., Fertig N., Winterhalter M. 2010. Permeation of antibiotics through Escherichia coli OmpF and OmpC porins. J. Biomol. Screen. 15 (3), 302–307. https://doi.org/10.1177/1087057109357791

    Article  CAS  PubMed  Google Scholar 

  21. Mahendran K.R., Hajjar E., Mach T., Lovelle M., Kumar A., Sousa I., Spiga E., Weingart H., Gameiro P., Winterhalter M., Ceccarelli M. 2010. Molecular basis of enrofloxacin translocation through OmpF, an outer membrane channel of Escherichia coli – When binding does not imply translocation. J. Phys. Chem. B. 114 (15), 5170–5179. https://doi.org/10.1021/jp911485k

    Article  CAS  PubMed  Google Scholar 

  22. Mach T., Neves P., Spiga E., Weingart H., Winterhalter M., Ruggerone P., Ceccarelli M., Gameiro P. 2008. Facilitated permeation of antibiotics across membrane channels – Interaction of the quinolone moxifloxacin with the OmpF channel. J. Am. Chem. Soc. 130 (40), 13301–13309. https://doi.org/10.1021/ja803188c

    Article  CAS  PubMed  Google Scholar 

  23. Bajaj H., Acosta-Gutierrez S., Bodrenko I., Malloci G., Scorciapino M.A., Winterhalter M., Ceccarelli M. 2017. Bacterial outer membrane porins as electrostatic nanosieves: Exploring transport rules of small polar molecules. ACS Nano. 11 (6), 5465–5473. https://doi.org/10.1021/acsnano.6b08613

    Article  CAS  PubMed  Google Scholar 

  24. Nestorovich E.M., Danelon C., Winterhalter M., Bezrukov S.M. 2002. Designed to penetrate: Time-resolved interaction of single antibiotic molecules with bacterial pores. Proc. Natl. Acad. Sci. USA. 99 (15), 9789–9794. https://doi.org/10.1073/pnas.152206799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kojima S., Nikaido H. 2013. Permeation rates of penicillins indicate that Escherichia coli porins function principally as nonspecific channels. Proc. Natl. Acad. Sci. USA. 110 (28), 2629–2634. https://doi.org/10.1073/pnas.1310333110

    Article  Google Scholar 

  26. Bafna J.A., Pangeni S., Winterhalter M., Aksoyoglu M.A. 2020. Electroosmosis dominates electrophoresis of antibiotic transport across the outer membrane porin F. Biophys. J. 118 (11), 2844–2852. https://doi.org/10.1016/j.bpj.2020.04.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Gaussian 16W. Version 1.1. Gaussian Inc., Wallingford (CT), 2019.

  28. Khomenko V.A., Portnyagina O.Y., Novikova O.D., Isaeva M.P., Kim N.Y., Likhatskaya G.N., Vostrikova O.P., Solov’eva T.F. 2008. Isolation and characterization of recombinant OmpF-like porin from the Yersinia pseudotuberculosis outer membrane. Russ. J. Bioorg. Chem. 34 (2), 162–168. https://doi.org/10.1134/s1068162008020040

    Article  CAS  Google Scholar 

  29. Mueller P., Rudin D.O., Ti Tien H., Wescott W.C. 1962. Reconstitution of cell membrane structure in vitro and its transformation into an excitable system. Nature. 194 (4832), 979–980.https://doi.org/10.1038/194979a0

    Article  CAS  PubMed  Google Scholar 

  30. Molecular Operating Environment (MOE), 2019.01. Chemical Computing Group ULC, 1010 Sherbooke St. West, Suite #910, Montreal, QC, Canada, H3A 2R7, 2021.

  31. Lee J., Cheng X., Swails J.M., Yeom M.S., Eastman P.K., Lemkul J.A., Wei S., Buckner J., Jeong J.C., Qi Y., Jo S., Pande V.S., Case D.A., Brooks C.L., MacKerell A.D., Klauda J.B., Im W. 2016. CHARMM-GUI input generator for NAMD, GROMACS, AMBER, OpenMM, and CHARMM/OpenMM simulations using the CHARMM36 additive force field. J. Chem. Theory Comput. 12 (1), 405–413. https://doi.org/10.1021/acs.jctc.5b00935

    Article  CAS  PubMed  Google Scholar 

  32. Lee J., Hitzenberger M., Rieger M., Kern N.R., Zacharias M., Im W. 2020. CHARMM-GUI supports the Amber force fields. J. Chem. Phys. 153 (3), 035103-035109. https://doi.org/10.1063/5.0012280

    Article  CAS  PubMed  Google Scholar 

  33. Case D.A., Babin V., Berryman J.T., Betz R.M., Cai Q.,Cerutti D.S., Cheatham III T.E., Darden T.A., Duke R.E., Gohlke H.; Goetz A.W., Gusarov S., Homeyer N., Janowski P., Kaus J., Kolossváry I., Kovalenko A., Lee T.S., LeGrand S., Luchko T., Luo R., Madej B., Merz K.M., Paesani F., Roe D.R., Roitberg A., Sagui C., Salomon-Ferrer R., Seabra G., Simmerling C.L., Smith W., Swails J., Walker R.C., Wang J., Wolf R.M., Wu X., Kollman P.A. 2014. AMBER 14. University of California, San Francisco.

  34. Dickson C.J., Madej B.D., Skjevik Å.A., Betz R.M., Teigen K., Gould I.R., Walker R.C. 2014. Lipid14: The amber lipid force field. J. Chem. Theory Comput. 10 (2), 865–879. https://doi.org/10.1021/ct4010307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Jorgensen W.L., Chandrasekhar J., Madura J.D., Impey R.W., Klein M.L. 1983. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 79 (2), 926–935. https://doi.org/10.1063/1.445869

    Article  CAS  Google Scholar 

  36. Methods for dilution of antimicrobial susceptibility tests for bacteria that grow aerobically; Approved standard. 10th Edition. CLSI Document M07-A10. 2015. Clinical and Laboratory Standards Institute, Wayne, PA. Available from: http://www.eucast.org

  37. Samson R. A. 1974. Paecilomyces and some allied hyphomycetes. In: Studies in mycology. Issue 6. Centraalbureau voor Schimmelcultures, (CBS), Baarn, Netherlands, p. 1–119.

  38. Ahumada A.A., Seeck J., Allemandi D., Manzo R.H. 1993. The pH/solubility profile of norfloxacin. S.T.R. Pharma Sciences. 3 (3), 250–253.

    CAS  Google Scholar 

  39. Reed A.E., Weinstock R.B., Weinhold F. 1985. Natural population analysis. J. Chem. Phys. 83 (2), 735–746. https://doi.org/10.1063/1.449486

    Article  CAS  Google Scholar 

  40. Reed A.E., Weinhold F. 1985. Natural localized molecular orbitals. J. Chem. Phys. 83 (4), 1736–1740. https://doi.org/10.1063/1.449360

    Article  CAS  Google Scholar 

  41. Malloci G., Vargiu A.V., Serra G., Bosin A., Ruggerone P., Ceccarelli M. 2015. A database of force-field parameters, dynamics, and properties of antimicrobial compounds. Molecules. 20 (8), 13 997−14 021. https://doi.org/10.3390/molecules200813997

    Article  CAS  Google Scholar 

  42. Hoenger A., Pagès J.M., Fourel D., Engel A.1993. The orientation of porin OmpF in the outer membrane of Escherichia coli. J. Mol. Biol. 233 (3), 400–413. https://doi.org/10.1006/jmbi.1993.1520

    Article  CAS  PubMed  Google Scholar 

  43. Danelon C., Brando T., Winterhalter M. 2003. Probing the orientation of reconstituted maltoporin channels at the single-protein level. J. Biol. Chem. 278 (237), 35542–35551. https://doi.org/10.1074/jbc.M305434200

    Article  CAS  PubMed  Google Scholar 

  44. Tanabe M., Nimigean C.M., Iverson T.M. 2010. Structural basis for solute transport, nucleotide regulation, and immunological recognition of Neisseria meningitides PorB. Proc. Natl. Acad. Sci. USA. 107 (15), 6811–6816. https://doi.org/10.1073/pnas.0912115107

    Article  PubMed  PubMed Central  Google Scholar 

  45. Likhatskaya G.N., Solov’eva T.F., Novikova O.D., Issaeva M.P., Gusev K.V., Kryzhko I.B., Trifonov E.V., Nurminski E.A. 2005. Homology models of the Yersinia pseudotuberculosis and Yersinia pestis general porins and comparative analysis of their functional and antigenic regions. J. Biomol. Struct. Dyn. 23 (2), 163–174. https://doi.org/10.1080/07391102.2005.10507056

    Article  CAS  PubMed  Google Scholar 

  46. Robertson K.M., Tieleman D.P. 2002. Orientation and interactions of dipolar molecules during transport through OmpF porin. FEBS Lett. 528 (1–3), 53–57. https://doi.org/10.1016/S0014-5793(02)03173-3

    Article  CAS  PubMed  Google Scholar 

  47. Danelon C., Nestorovich E.M., Winterhalter M., Ceccarelli M., Bezrukov S.M. 2006. Interaction of zwitterionic penicillins with the OmpF channel facilitates their translocation. Biophys. J. 90 (5), 1617–1627. https://doi.org/10.1529/biophysj.105.075192

    Article  CAS  PubMed  Google Scholar 

  48. Cama J., Bajaj H., Pagliara S., Maier T., Braun Y., Winterhalter M., Keyser U.F. 2015. Quantification of fluoroquinolone uptake through the outer membrane channel OmpF Escherichia coli. J. Am. Chem. Soc. 137 (43), 13836–13843. https://doi.org/10.1021/jacs.5b08960

    Article  CAS  PubMed  Google Scholar 

  49. Prigogine I., Stuart A.R. 1999. Hydrogen bonds with large proton polarizability and proton transfer processes in electrochemistry and biology. Adv. Chem. Phys. 111, 1–217. https://doi.org/10.1002/9780470141700.ch1

    Article  Google Scholar 

  50. Woldegiorges K., Belay A., Kebede A., Abebe T. 2021. Estimating the ground and excited state dipole moments of levofloxacin and norfloxacin drugs using solvatochromic effects and computational work. J. Spectroscopy. Article ID 7214182. https://doi.org/10.1155/2021/7214182

  51. Van Gelder P., Dumas F., Rosenbusch J.P., Winterhalter M. 2000. Oriented channels reveal asymmetric energy barriers for sugar translocation through maltoporin of Escherichia coli. Eur. J. Biochem. 267 (1), 79–84. https://doi.org/10.1046/j.1432-1327.2000.00960.x

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to Dr. Sci. Dmitry Aminin for review and valuable comments, and Ph.D. Viktoria Davydova for fruitful discussion. Computer simulation and theoretical studies were performed using cluster CCU “Far Eastern computing resource” FEB RAS (Vladivostok).

Funding

State assignment, topic No. AAAA-A20-120011490018-3.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, O.N., E.Z., and V.N.; methodology, V.N., D.Ch., E.Z., and V.Kh; formal analysis, V.N., D.Ch., E.Z., E.Ch.; investigation, D.Ch., E.Z., E.Ch., N.B., V.N., V.G., and V.Kh; data curation, O.N., E.Z., and V.N; writing, original draft preparation, O.N, D.Ch., V.N., and E.Z.; writing, review and editing, O.N, V.N., and E.Z.; visualization, D.Ch., E.Z., and N.B.; supervision, O.N. All authors have read and agreed to the published version of the manuscript. Authors D. Ch. and E.Z. contributed equally to this work and share first authorship.

Corresponding authors

Correspondence to E. A. Zelepuga or O. D. Novikova.

Ethics declarations

CONFLICT OF INTEREST

The authors declare no conflict of interest.

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

This article does not describe any studies involving human subjects or animals.

Additional information

Translated by O. Novikova, E. Zelepuga and V. Novikov

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chistyulin, D.K., Zelepuga, E.A., Novikov, V.L. et al. Molecular Model of Norfloxacin Translocation through Yersinia pseudotuberculosis Porin OmpF Channel: Electrophysiological and Molecular Modeling Study. Biochem. Moscow Suppl. Ser. A 17 (Suppl 1), S20–S38 (2023). https://doi.org/10.1134/S1990747823070024

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990747823070024

Keywords:

Navigation