Log in

Effects of Haloperidol and Cyproheptadine on the Cytoskeleton of the Sea Urchin Embryos

  • Published:
Biochemistry (Moscow), Supplement Series A: Membrane and Cell Biology Aims and scope

Abstract

Early sea urchin embryos are sensitive to agonists and antagonists of transmitter receptors, both metabotropic and channel ones. In this work, we studied mechanisms of the cytostatic action of cyproheptadine and haloperidol–antagonists of serotonin 5HT2 receptors and dopamine D2 receptors, respectively. For this purpose, we employed the model of the blockade of the first cleavage division in sea urchin, which allows quantifying the effects of embryotoxic substances. The action of haloperidol and cyproheptadine is mediated by the effects on cytoskeleton elements. Both antagonists caused an increase in the degree of polymerization of the actin cytoskeleton, both in the cortical layer and in the cytoplasm. In addition, both antagonists affected the tubulin cytoskeleton: haloperidol predominantly disturbed spatial organization of the mitotic spindle, while cyproheptadine caused a complete depolymerization of tubulin and arrest of mitotic processes. The results indicate that cytostatic effects of dopamine and serotonin antagonists on cleavage divisions of sea urchin embryos are mediated by similar and/or crosstalk molecular mechanisms but also have significant differences that require further research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Buznikov G.A. 1990. Neurotransmitters in embryogenesis. Chur, Academic Press.

    Google Scholar 

  2. Buznikov G.A., Nikitina L.A., Rakić L.M., Milošević I., Bezuglov V.V., Lauder J.M., Slotkin T.A. 2007. The sea urchin embryo, an invertebrate model for mammalian developmental neurotoxicity, reveals multiple neurotransmitter mechanisms for effects of chlorpyrifos: Therapeutic interventions and a comparison with the monoamine depleter, reserpine. Brain Res. Bull. 74 (4), 221–231.

    Article  CAS  Google Scholar 

  3. Buznikov G.A., Grigoriev N.G. 1990. Effect of biogenic monoamines and their antagonists on the cortical cytoplasmic layer of early sea urchins. Zh. Evol. Biokhim. Fiziol. (Rus.).26, 614–622.

    CAS  Google Scholar 

  4. Nikishin D.A., Milošević I., Gojković M., Rakić L., Bezuglov V.V., Shmukler Y.B. 2016. Expression and functional activity of neurotransmitter system components in sea urchins’ early development. Zygote. 24, 206–218.

    Article  CAS  Google Scholar 

  5. Buznikov G.A., Marshak T.L., Malchenko L.A., Nikitina L.A., Shmukler Yu.B., Buznikov A.G., Rakic Lj., Whitaker M.J. 1998. Serotonin and acetylcholine modulate the sensitivity of early sea urchin embryos to protein kinase C activators. Comp. Biochem. Physiol.120A (2), 457–462.

    Article  CAS  Google Scholar 

  6. Shmukler Yu.B., Buznikov G.A., Whitaker M.J. 1999. Action of serotonin antagonists on cytoplasmic calcium level in early embryos of sea urchin Lytechinus pictus.Int. J. Dev. Biol.42 (3), 179–182.

    Google Scholar 

  7. Grigoriev N.G. 1988. Cortical layer of the cytoplasm – possible place of action of prenervous transmitters. Zh. Evol. Biokhim. Fiziol. (Rus.).24 (5), 625–629.

    Google Scholar 

  8. Grigoriev N.G., Shmukler Yu.B. 1984. On the role of ionic gradients on the cell membrane in the early development of sea urchin embryos. Dokl. AN SSSR (Rus.).274 (2), 464–466.

    Google Scholar 

  9. Buznikov G.A., Podmarev V.I. 1990. The sea urchins Strongylocentrotus droebachiensis, S. nudus and S. intermedius. In: Animal Species for Developmental Studies, vol. 1. Invertebrates. T.A. Dettlaff, Vassetzky S.G., eds. New York-London: Consultants Bureau, p. 251–283.

  10. Bindslev N. 2017. Drug–acceptor interactions. London: CRC Press.

    Book  Google Scholar 

  11. Schindelin J., Arganda-Carreras I., Frise E., Kaynig V., Longair M., Pietzsch T., Preibisch S., Rueden C., Saalfeld S., Schmid B., Tinevez J.Y., White D.J., Hartenstein V., Eliceiri K., Tomancak P., Cardona A. 2012. Fiji: An open-source platform for biological-image analysis. Nat. Methods. 9 (7), 676–682.

    Article  CAS  Google Scholar 

  12. Dobretsov M., Petkau G., Hayar A., Petkau E. 2017. Clock scan protocol for image analysis: ImageJ plugins. J. Vis. Exp. 124, e55819.

    Google Scholar 

  13. Giraldo J., Vivas N.M., Vila E., Badia A. 2002. Assessing the (a)symmetry of concentration-effect curves: Empirical versus mechanistic models. Pharmacol. Ther.95 (1), 21–45.

    Article  CAS  Google Scholar 

  14. Bowling H., Santini E. 2016. Unlocking the molecular mechanisms of antipsychotics – a new frontier for discovery. Swiss Med. Wkly. 146, w14314.

    PubMed  Google Scholar 

  15. Liu X., Shi Y., Woods K.W., Hessler P., Kroeger P., Wilsbacher J., Wang J., Wang J.Y., Li C., Li Q., Rosenberg S.H., Giranda V.L., Luo Y. 2008. Akt inhibitor a443654 interferes with mitotic progression by regulating Aurora A kinase expression. Neoplasia. 10 (8), 828–837.

    Article  CAS  Google Scholar 

  16. Benítez-King G., Ortíz-López L., Jiménez-Rubio G., Ramírez-Rodríguez G. 2010. Haloperidol causes cytoskeletal collapse in N1E-115 cells through tau hyperphosphorylation induced by oxidative stress: Implications for neurodevelopment. Eur. J. Pharmacol.644 (1–3), 24–31.

    Article  Google Scholar 

  17. Lee M.S., Johansen L., Zhang Y., Wilson A., Keegan M., Avery W., Elliott P., Borisy A.A., Keith C.T. 2007. The novel combination of chlorpromazine and pentamidine exerts synergistic antiproliferative effects through dual mitotic action. Cancer Res. 67 (23), 11359–11367.

    Article  CAS  Google Scholar 

  18. Callender J.A., Newton A.C. 2017. Conventional protein kinase C in the brain: 40 years later. Neuronal Signal. 1, NS20160005.

Download references

ACKNOWLEDGMENTS

The work was supported by the Russian Academy of Sciences and Serbian Academy of Art and Science (joint program Neurotransmitters – Ontogenetic and Neurobiological Aspects). The work was conducted in the frames of the Government basic research program no. 0108-2019-0003 (Institute of Developmental Biology, RAS). N.D.A., M.L.A., and S.Y.B. carried out the work using the equipment of the Core Center of the Institute of Developmental Biology RAS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Nikishin.

Ethics declarations

The authors declare that they have no conflict of interest.

All procedures were performed in accordance with the European Communities Council Directive (November 24, 1986; 86/609/EEC) and the Declaration on humane treatment of animals. The Protocol of experiments was approved by the Commission on Bioethics of the Koltzov Institute of Developmental Biology RAS, Moscow, Russia.

Additional information

Translated by Yu. Shmukler

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nikishin, D.A., Malchenko, L.A., Milošević, I. et al. Effects of Haloperidol and Cyproheptadine on the Cytoskeleton of the Sea Urchin Embryos. Biochem. Moscow Suppl. Ser. A 14, 249–254 (2020). https://doi.org/10.1134/S1990747820020087

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990747820020087

Keywords:

Navigation