Log in

Double Covalent Bonding of Biliverdin in Near-Infrared Fluorescent Proteins Prevents Their Proteolytic Degradation

  • Published:
Cell and Tissue Biology Aims and scope Submit manuscript

Abstract

In this work, we analyzed how the double covalent binding of the biliverdin ligand (BV) in the near-infrared fluorescent protein iRFP670 containing two key cysteine residues affects the resistance of the biomarker to proteolytic degradation. It was previously revealed that the covalent attachment of BV to two key cysteine residues simultaneously is the reason for the highest fluorescence quantum yield of BV-containing near-infrared fluorescent proteins (NIR FPs) with two key cysteine residues compared to other BV-containing NIR FPs. Our data indicate that the covalent binding of BV in an NIR FP with two key cysteine residues simultaneously with two regions of the polypeptide chain, which, in addition, forms a figure-of-eight knot, leads to screening of many cleavage sites by the proteolytic enzymes trypsin and chymotrypsin in them. As a result, the covalent binding of BV in NIR FPs simultaneously with two key cysteine residues not only stabilizes their structure, but also increases their resistance to proteolytic degradation, which determines the cellular stability of biomarkers and is important for their use as fluorescent labels in the cell.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Abagyan, R., Totrov, M., and Kuznetsov, D., ICM-A New Method for protein modeling and design: applications to docking and structure prediction from the distorted native conformation, J. Comput. Chem., 1994, vol. 15, p. 488.

    Article  CAS  Google Scholar 

  2. Baloban, M., Shcherbakova, D.M., Pletnev, S., Pletnev, V.Z., Lagarias, J.C., and Verkhusha, V.V., Designing brighter near-infrared fluorescent proteins: insights from structural and biochemical studies, Chem. Sci., 2017, vol. 8, p. 4546. https://doi.org/10.1039/c7sc00855d

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bellini, D. and Papiz, M.Z., Dimerization properties of the RpBphP2 chromophore-binding domain crystallized by homologue-directed mutagenesis, Acta Crystallogr. D Biol. Crystallogr., 2012, vol. 68, p. 1058. https://doi.org/10.1107/S0907444912020537

    Article  CAS  PubMed  Google Scholar 

  4. Berkelman, T.R. and Lagarias, J.C., Visualization of bilin-linked peptides and proteins in polyacrylamide gels, Anal. Biochem., 1986, vol. 156, p. 194. https://doi.org/10.1016/0003-2697(86)90173-9

    Article  CAS  PubMed  Google Scholar 

  5. Buhrke, D., Tavraz, N.N., Shcherbakova, D.M., Sauthof, L., Moldenhauer, M., Velazquez Escobar, F., Verkhusha, V.V., Hildebrandt, P., and Friedrich, T., Chromophore binding to two cysteines increases quantum yield of near-infrared fluorescent proteins, Sci. Rep., 2019, vol. 9, p. 1866. https://doi.org/10.1038/s41598-018-38433-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Chernov, K.G., Redchuk, T.A., Omelina, E.S., and Verkhusha, V.V., Near-Infrared fluorescent proteins, biosensors, and optogenetic tools engineered from phytochromes, Chem. Rev., 2017, vol. 117, p. 6423. https://doi.org/10.1021/acs.chemrev.6b00700

    Article  CAS  PubMed  Google Scholar 

  7. Diaz-Gonzalez, F., Milano, M., Olguin-Araneda, V., Pizarro-Cerda, J., Castro-Cordova, P., Tzeng, S.C., Maier, C.S., Sarker, M.R., and Paredes-Sabja, D., Protein composition of the outermost exosporium-like layer of Clostridium difficile 630 spores, J. Proteomics, 2015, vol. 123, p. 1. https://doi.org/10.1016/j.jprot.2015.03.035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Dutta, S., Burkhardt, K., Swaminathan, G.J., Kosada, T., Henrick, K., Nakamura, H., and Berman, H.M., Data deposition and annotation at the worldwide protein data bank, Methods Mol. Biol., 2008, vol. 426, p. 81. https://doi.org/10.1007/978-1-60327-058-8_5

    Article  CAS  PubMed  Google Scholar 

  9. Hsin, J., Arkhipov, A., Yin, Y., Stone, J.E., and Schulten, K., Using VMD: an introductory tutorial, Curr. Protoc. Bioinformatics, 2008, ch. 5, unit 5.7.

  10. Kapitulnik, J. and Maines, M.D., The role of bile pigments in health and disease: effects on cell signaling, cytotoxicity, and cytoprotection, Front. Pharmacol., 2012, vol. 3, p. 136. https://doi.org/10.3389/fphar.2012.00136

    Article  PubMed  PubMed Central  Google Scholar 

  11. Komatsu, N., Aoki, K., Yamada, M., Yukinaga, H., Fujita, Y., Kamioka, Y., and Matsuda, M., Development of an optimized backbone of FRET biosensors for kinases and GTPases, Mol. Biol. Cell., 2011, vol. 22 (23), p. 4647. https://doi.org/10.1091/mbc.E11-01-0072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Krey, J.F., Sherman, N.E., Jeffery, E.D., Choi, D., and Barr-Gillespie, P.G., The proteome of mouse vestibular hair bundles over development, Sci. Data, 2015, vol. 2, p. 150047. https://doi.org/10.1038/sdata.2015.47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Laemmli, U.K., Cleavage of structural proteins during the assembly of the head of bacteriophage T4, Nature, 1970, vol. 227, p. 680. https://doi.org/10.1038/227680a0

    Article  CAS  PubMed  Google Scholar 

  14. Li, L., Shemetov, A.A., Baloban, M., Hu, P., Zhu, L., Shcherbakova, D.M., Zhang, R., Shi, J., Yao, J., Wang, L.V., and Verkhusha, V.V., Small near-infrared photochromic protein for photoacoustic multi-contrast imaging and detection of protein interactions in vivo, Nat. Commun., 2018, vol. 9, p. 2734. https://doi.org/10.1038/s41467-018-05231-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Matlashov, M.E., Shcherbakova, D.M., Alvelid, J., Baloban, M., Pennacchietti, F., Shemetov, A.A., Testa, I., and Verkhusha, V.V., A set of monomeric near-infrared fluorescent proteins for multicolor imaging across scales, Nat. Commun., 2020, vol. 11, p. 239. https://doi.org/10.1038/s41467-019-13897-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Merritt, E.A. and Bacon, D.J., Raster3D: photorealistic molecular graphics, Methods Enzymol., 1997, vol. 277, p. 505. https://doi.org/10.1016/S0076-6879(97)77028-9

    Article  CAS  PubMed  Google Scholar 

  17. Mine, Y., Ma, F., and Lauriau, S., Antimicrobial peptides released by enzymatic hydrolysis of hen egg white lysozyme, J. Agric. Food Chem., 2004, vol. 52, no. 5, p. 1088. https://doi.org/10.1021/jf0345752

    Article  CAS  PubMed  Google Scholar 

  18. Proctor, V.A. and Cunningham, F.E., The chemistry of lysozyme and its use as a food preservative and a pharmaceutical, Crit. Rev. Food Sci. Nutr., 1988, vol. 26, p. 359. https://doi.org/10.1080/10408398809527473

    Article  CAS  PubMed  Google Scholar 

  19. Qian, Y., Piatkevich, K.D., Mc Larney, B., Abdelfat-tah, A.S., Mehta, S., Murdock, M.H., Gottschalk, S., Molina, R.S., Zhang, W., Chen, Y., Wu, J., Drobizhev, M., Hughes, T.E., Zhang, J., Schreiter, E., et al., A genetically encoded near-infrared fluorescent calcium ion indicator, Nat. Methods, 2019, vol. 16, p. 171. https://doi.org/10.1038/s41592-018-0294-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Rodriguez, E.A., Campbell, R.E., Lin, J.Y., Lin, M.Z., Miyawaki, A., Palmer, A.E., Shu, X., Zhang, J., and Tsien, R.Y., The growing and glowing toolbox of fluorescent and photoactive proteins, Trends Biochem. Sci., 2017, vol. 42, p. 111. https://doi.org/10.1016/j.tibs.2016.09.010

    Article  CAS  PubMed  Google Scholar 

  21. Schagger, H., Tricine-SDS-PAGE, Nat. Protoc., 2006, vol. 1, p. 16. https://doi.org/10.1038/nprot.2006.4

    Article  CAS  PubMed  Google Scholar 

  22. Shcherbakova, D.M., Baloban, M., Pletnev, S., Malashkevich, V.N., **ao, H., Dauter, Z., and Verkhusha, V.V., Molecular basis of spectral diversity in near-infrared phytochrome-based fluorescent proteins, Chem. Biol., 2015, vol. 22, p. 1540. https://doi.org/10.1016/j.chembiol.2015.10.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Shcherbakova, D.M., Cox Cammer, N., Huisman, T.M., Verkhusha, V.V., and Hodgson, L., Direct multiplex imaging and optogenetics of Rho GTPases enabled by near-infrared FRET, Nat. Chem. Biol., 2018a, vol. 14, p. 591. https://doi.org/10.1038/s41589-018-0044-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Shcherbakova, D.M., Stepanenko, O.V., Turoverov, K.K., Verkhusha, V.V., Near-infrared fluorescent proteins: multiplexing and optogenetics across scales, Trends Biotechnol., 2018b, vol. 36, p. 1230. https://doi.org/10.1016/j.tibtech.2018.06.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Shin, J.B., Pagana, J., and Gillespie, P.G., Twist-off purification of hair bundles, Methods Mol. Biol., 2009, vol. 493, p. 241. https://doi.org/10.1007/978-1-59745-523-7_14

    Article  CAS  PubMed  Google Scholar 

  26. Stepanenko, O.V., Baloban, M., Bublikov, G.S., Shcherbakova, D.M., Stepanenko, O.V., Turoverov, K.K., Kuznetsova, I.M., and Verkhusha, V.V., Allosteric effects of chromophore interaction with dimeric near-infrared fluorescent proteins engineered from bacterial phytochromes, Sci. Rep., 2016, vol. 6, p. 18750. https://doi.org/10.1038/srep18750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Stepanenko, O.V., Stepanenko, O.V., Bublikov, G.S., Kuznetsova, I.M., Verkhusha, V.V., and Turoverov, K.K., Stabilization of structure in near-infrared fluorescent proteins by binding of biliverdin chromophore, J. Mol. Str., 2017a, vol. 1140, p. 22. https://doi.org/10.1016/j.molstruc.2016.10.095

    Article  CAS  Google Scholar 

  28. Stepanenko, O.V., Stepanenko, O.V., Kuznetsova, I.M., Shcherbakova, D.M., Verkhusha, V.V., and Turove-rov, K.K., Interaction of biliverdin chromophore with near-infrared fluorescent protein BphP1-FP engineered from bacterial phytochrome, Int. J. Mol. Sci., 2017b, vol. 18, p. 1009. https://doi.org/10.3390/ijms18051009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Stepanenko, O.V., Stepanenko, O.V., Shpironok, O.G., Fonin, A.V., Kuznetsova, I.M., and Turoverov, K.K., Near-Infrared markers based on bacterial phytochromes with phycocyanobilin as a chromophore, Int. J. Mol. Sci., 2019, vol. 20, p. 6067. https://doi.org/10.3390/ijms20236067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Stepanenko, O.V., Kuznetsova, I.M., Turoverov, K.K., and Stepanenko, O.V., Impact of double covalent binding of BV in NIR FPs on their spectral and physicochemical properties, Int. J. Mol. Sci., 2022, vol. 23, p. 7347. https://doi.org/10.3390/ijms23137347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Subach, O.M., Barykina, N.V., Anokhin, K.V., Piatkevich, K.D., and Subach, F.V., Near-infrared genetically encoded positive calcium indicator based on GAF-FP bacterial phytochrome, Int. J. Mol. Sci., 2019, vol. 20, p. 3488. https://doi.org/10.3390/ijms20143488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Weissleder, R., A clearer vision for in vivo imaging, Nat. Biotechnol., 2001, vol. 19, p. 316. https://doi.org/10.1038/86684

    Article  CAS  PubMed  Google Scholar 

  33. Yu, D., Gustafson, W.C., Han, C., Lafaye, C., Noirclerc-Savoye, M., Ge, W.P., Thayer, D.A., Huang, H., Kornberg, T.B., Royant, A., Jan, L.Y., Jan, Y.N., Weiss, W.A., and Shu, X., An improved monomeric infrared fluorescent protein for neuronal and tumour brain imaging, Nat. Commun., 2014, vol. 5, p. 3626. https://doi.org/10.1038/ncomms4626

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The work was carried out in accordance with a state order to the Ministry of Science and Higher Education of the Russian Federation (FMFU-2021-0001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olga V. Stepanenko.

Ethics declarations

The authors declare that they have no conflicts of interest. The authors declare that human beings or animals were not used as subjects in the experiments.

Additional information

Abbreviations: NIR–near-infrared; FPs—fluorescent proteins; BV—biliverdin; GdnHCl—guanidine hydrochloride.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stepanenko, O.V., Stepanenko, O.V. Double Covalent Bonding of Biliverdin in Near-Infrared Fluorescent Proteins Prevents Their Proteolytic Degradation. Cell Tiss. Biol. 17, 275–283 (2023). https://doi.org/10.1134/S1990519X23030136

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990519X23030136

Keywords:

Navigation