Log in

Assessment of Heat-Shock Protein Hsp70 Colocalization with Markers of Tumor Stem-Like Cells

  • Published:
Cell and Tissue Biology Aims and scope Submit manuscript

Abstract

The search of biomarkers for early diagnosis and theranostics of glioblastoma multiforme (GBM) due to the aggressiveness of the disease is an urgent needed. In the present work, the expression of the heat-shock protein Hsp70 was detected and a quantitative assessment of its colocalization with markers of tumor stem-like cells (TSLCs) was made using the multiplex method of analysis of histological preparations of GBM. Cells expressing Hsp70 are uniformly distribution in the tumor and have colocalization with Nestin and Sox2, indicate the promise of using Hsp70 as a target for targeted therapy of malignant brain tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Albakova, Z.A., Grigoriy, A., Kanevskiy, L.M., Kovalenko, E.I., and Sapozhnikov, A.M., HSP70 multi-functionality in cancer, Cells, 2020, vol. 9, p. 587. https://doi.org/10.3390/cells9030587

    Article  CAS  PubMed Central  Google Scholar 

  2. Barreca, M.M., Spinello, W., Cavalieri, V., Turturici, G., Sconzo, G., Kaur, P., Tinnirello, R., Asea, A., and Geraci, F., Extracellular Hsp70 enhances mesoangioblast migration via an autocrine signaling pathway, J. Cell Physiol., 2017, vol. 232, p. 1845. https://doi.org/10.1002/jcp.25722

    Article  CAS  PubMed  Google Scholar 

  3. Breuninger, S., Stangl, S., Werner, C., Sievert, W., Lobinger, D., Foulds, G.A., Wagner, S., Pickhard, A., Piontek, G., and Kokowski, K., Membrane Hsp70—a novel target for the isolation of circulating tumor cells after epithelial-to-mesenchymal transition, Front. Oncol., 2018, vol. 8, p. 497. https://doi.org/10.3389/fonc.2018.00497

    Article  PubMed  PubMed Central  Google Scholar 

  4. Gallego, O., Nonsurgical treatment of recurrent glioblastoma, Curr. Oncol., 2015, vol. 22, p. 273. https://doi.org/10.3747/co.22.2436

    Article  Google Scholar 

  5. Kumar, S., Stokes, J., Singh, U.P., Gunn, K.S., Acharya, A., Manne, U., and Mishra, M., Targeting Hsp70: a possible therapy for cancer, Cancer Lett., 2016, vol. 374, p. 156. https://doi.org/10.1016/j.canlet.2016.01.056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Matsuda, Y., Naito, Z., Kawahara, K., Nakazawa, N., Korc, M., and Ishiwata, T., Nestin is a novel target for suppressing pancreatic cancer cell migration, invasion and metastasis, Cancer Biol. Ther., 2011, vol. 11, p. 512. https://dx.doi.org/10.4161%2Fcbt.11.5.14673

    Article  CAS  Google Scholar 

  7. Matsuda, Y., Ishiwata, T., Yoshimura, H., Hagio, M., and Arai, T., Inhibition of nestin suppresses stem cell phenotype of glioblastomas through the alteration of post-translational modification of heat shock protein HSPA8/HSC71, Cancer Lett., 2015, vol. 357, p. 602. https://doi.org/10.1016/j.canlet.2014.12.030

    Article  CAS  PubMed  Google Scholar 

  8. Mimeault, M. and Batra, S.K., Altered gene products involved in the malignant reprogramming of cancer stem/progenitor cells and multitargeted therapies, Mol. Aspects Med., 2014, vol. 39, p. 3.

    Article  CAS  Google Scholar 

  9. Mori, H., Bolen, J., Schuetter, L., Massion, P., Hoyt, C., Vanden Berg, S., Esserman, L., Borowsky, A., and Campbel, M., Characterizing the tumor immune microenvironment with tyramide‑based multiplex immunofluorescence, J. Mammary Gland Biol. Neoplasia, 2020, vol. 25, p. 417. https://doi.org/10.1016/j.mam.2013.08.001

    Article  CAS  PubMed  Google Scholar 

  10. Muir, M., Gopakumar, S., Traylor, J., Lee, S., and Rao, G., Glioblastoma multiforme: novel therapeutic targets, Expert Opin. Ther. Targets, 2020, vol. 24, p. 605. https://doi.org/10.1080/14728222.2020.1762568

    Article  CAS  PubMed  Google Scholar 

  11. Novak, D., Hüser, L., Elton, J.J., Umansky, V., Altevogt, P., and Utikal, J., SOX2 in development and cancer biology, Semin. Cancer Biol., 2020, vol. 67, part 1, p. 74. https://doi.org/10.1016/j.semcancer.2019.08.007

    Article  CAS  PubMed  Google Scholar 

  12. Parlato, C., Barbarisi, M., Moraci, M., and Moraci, A., Surgery, radiotherapy and temozolomide in treating high-grade gliomas, Front. Biosci., 2006, vol. 1, p. 1280. https://doi.org/10.2741/1881

    Article  Google Scholar 

  13. Pfister, K., Radons, J., Busch, R., Tidball, J.G., Pfei-fer, M., Freitag, L., Feldmann, H.J., Milani, V., Issels, R., and Multhoff, G., Patient survival by Hsp70 membrane phenotype: Association with different routes of metastasis, Cancer, 2007, vol. 110, p. 926.

    Article  Google Scholar 

  14. Phillips, H.S., Kharbanda, S., Chen, R., Forrest, W.F., Soriano, R.H., Wu, T.D., Misra, A., Nigro, J.M., Col-man, H., Soroceanu, L., Williams, P.M.Y., Modrusan, Z., Feuerstein, B.G., and Aldape, K., Molecular subclasses of high-grade glioma predict prognosis, delineate a pattern of disease progression, and resemble stages in neurogenesis, Cancer Cell, 2006, vol. 9, p. 157. https://doi.org/10.1016/j.ccr.2006.02.019

    Article  CAS  PubMed  Google Scholar 

  15. Razavi, S.M., Lee, K.E., **, B.E., Aujla, P.S., Gholamin, S., and Li, G., Immune evasion strategies of glioblastoma, Front. Surg., 2016, vol. 3, p. 11. https://doi.org/10.3389/fsurg.2016.00011

    Article  PubMed  PubMed Central  Google Scholar 

  16. Sasmita, A.O., Wong, Y.P., and Ling, A.P.K., Biomarkers and therapeutic advances in glioblastoma multiforme, Asia Pac. J. Clin. Oncol., 2018, vol. 14, p. 40.https://doi.org/10.1111/ajco.12756

    Article  PubMed  Google Scholar 

  17. Shevtsov, M., Balogi, Z., Khachatryan, W., Gao, H., Vigh, L., and Multhoff, G., Membrane—associated heat shock proteins in oncology: from basic research to new teranostic targets, Cells, 2020, vol. 9, p. 1263. https://doi.org/10.3390/cells9051263

    Article  CAS  PubMed Central  Google Scholar 

  18. Sidi, F., Bingham, V., Craig, S., McQuaid, S., James, J., Humphries, M., and Salto-Tellez, M., PD-L1 multiplex and quantitative image analysis for molecular diagnostics, Cancers, 2021, vol. 13, p. 29. https://doi.org/10.3390/cancers13010029

    Article  CAS  Google Scholar 

  19. Taube, J., Roman, K., Engle, E., Wang, C., Ballesteros-Merino, C., Jensen, S., McGuire, J., Jiang, M., Coltharp, C., Remeniuk, B., Wistuba, I., Locke, D., Parra, E., Fox, B., Rimm, D., and Hoyt, C., Multi-institutional TSA-amplified multiplexed immunofluorescence reproducibility evaluation (MITRE) study, J. Immunother. Cancer, 2021, vol. 9, article ID e002197. https://doi.org/10.1136/jitc-2020-002197

    Article  PubMed  PubMed Central  Google Scholar 

  20. Thorsteinsdottir, J., Stangl, S., Fu, P., Guo, K., Albrecht, V., Eigenbrod, S., Erl, J., Gehrmann, M., Tonn, J.C., and Multhoff, G., Overexpression of cytosolic, plasma membrane bound and extracellular heat shock protein 70 (Hsp70) in primary glioblastomas, J. Neurooncol., 2017, vol. 135, p. 443. https://doi.org/10.1007/s11060-017-2600-z

    Article  CAS  PubMed  Google Scholar 

  21. Uozaki, H., Ishida, T., Kakiuchi, C., Horiuchi, H., Gotoh, T., Iijima, T., Imamura, T., and Machinami, R., Expression of heat shock proteins in osteosarcoma and its relationship to prognosis, Pathol. Res. Pract., 2000, vol. 196, p. 665. https://doi.org/10.1016/S0344-0338(00)80118-1

    Article  CAS  PubMed  Google Scholar 

  22. Vargas-Toscano, A., Janiak, C., Sabel, M., and Kahlert, U., A preclinical pipeline for translational precision medicine-experiences from a transdisciplinary brain tumor stem cell project, J. Pers. Med., 2021, vol. 11, p. 892. https://doi.org/10.3390/jpm11090892

    Article  PubMed  PubMed Central  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors express their deep gratitude to the BioLine LLC Group for the reagents and equipment provided for the work, as well as to Darya Dyakova, an employee of this company, for her help in preparing and analyzing preparations.

Funding

This work was supported by the Russian Foundation for Basic Research, project no. 19-58-55001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. M. Yudintceva.

Ethics declarations

Conflict of interest. The authors declare that they have no conflict of interest.

Statement of compliance with standards of research involving humans as subjects. The protocol of the clinical trial was approved by the Ethics Committee of the Almazov Federal Medical Research Center. All patients signed an informed consent to provide material for research.

Additional information

Abbreviations: IHC, immunohistochemistry; IF, immunofluorescence; GBM, glioblastoma multiforme; TSLCs, tumor stem-like cells; DAB, 3,3'-diaminobenzidine; HSP, heat-shock protein; PBS, phosphate-buffered saline solution.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yudintceva, N.M., Mikhrina, A.L., Nechaeva, A.S. et al. Assessment of Heat-Shock Protein Hsp70 Colocalization with Markers of Tumor Stem-Like Cells. Cell Tiss. Biol. 16, 459–464 (2022). https://doi.org/10.1134/S1990519X22050108

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990519X22050108

Keywords:

Navigation