Log in

Effect of Sodium Butyrate on Proliferative Signaling Cascades in Sensitive and Resistant to Histone Deacetylase Inhibitors Cells

  • Published:
Cell and Tissue Biology Aims and scope Submit manuscript

Abstract

To establish the mechanisms of transformed cells resistance to the histone deacetylase inhibitors (HDACi), we compared the changes of the main proliferative signaling cascades activities in cells that are sensitive or resistant to HDACi-induced apoptosis. We showed that PKB/Akt kinase was constitutively activated in cells sensitive to HDAC inhibitor sodium butyrate induced apoptosis, while in sodium butyrate resistant cells, PKB/Akt kinase phosphorylation decreased under the sodium butyrate treatment. Nonlinear time-dependent dynamics of the ERK kinase activity was shown. Phosphorylation of ERK kinase increased in the first 24 hours of the HDACi sodium butyrate treatment, followed by ERK activity decrease in resistant cells. Whereas in apoptotic cells, an inverse time-dependent dynamics of ERK activity was observed. It has been shown that resistance to HDACi can be overcome by inhibiting the MEK/ERK pathway: sodium butyrate in combination with the inhibitor of the MEK/ERK pathway PD098059 induced apoptosis in resistant cells within 48 h. The study of the Wnt/β-catenin signaling cascade showed that the accumulation and transcriptional activation of β-catenin occurs only in cells resistant to HDACi-induced apoptosis. Whilst the amount and activity of β-catenin did not change under sodium butyrate treatment in the HDACi-sensitive cells. Thus, our results indicate that the β-catenin activity modulation is one of the reasons for cancer cells resistance to HDAC inhibitor’s pro-apoptotic action; the increased activity of the PI3K/PKB/Akt and MEK/ERK kinase pathways is a prerequisite for the most effective antiproliferative action of HDAC inhibitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Abramova, M.V., Pospelova, T.V., Nikulenkov, F.P., Hollander, C.M., Fornace, A.J., and Pospelov, V.A., G1/S arrest induced by histone deacetylase inhibitor sodium butyrate in E1A + Ras-transformed cells is mediated through down-regulation of E2F activity and stabilization of beta-catenin, J. Biol. Chem., 2006, vol. 281, p. 21040.

    Article  CAS  PubMed  Google Scholar 

  2. Abramova, M.V., Zatulovskiy, E.A., Svetlikova, S.B., Kukushkin, A.N., and Pospelov, V.A., e2f1 Gene is a new member of Wnt/beta-catenin/Tcf-regulated genes, Biochem. Biophys. Res. Commun., 2010, vol. 391, p. 142.

    Article  CAS  PubMed  Google Scholar 

  3. Ahmed, Y., Hayashi, S., Levine, A., and Wieschaus, E., Regulation of armadillo by a Drosophila APC inhibits neuronal apoptosis during retinal development, Cell, 1998, vol. 93, p. 1171.

    Article  CAS  PubMed  Google Scholar 

  4. Ahmed, D., Eide, P.W., Eilertsen, I.A., Danielsen, S.A., Eknæs, M., Hektoen, M., Lind, G.E., and Lothe, R.A., Epigenetic and genetic features of 24 colon cancer cell lines, Oncogenesis, 2013, vol. 2, p. e71. https://doi.org/10.1038/oncsis.2013.35

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Allan, L.A., Morrice, N., Brady, S., Magee, G., Pathak, S., and Clarke, P.R., Inhibition of caspase-9 through phosphorylation at Thr 125 by ERK MAPK, Nat. Cell Biol., 2003, vol. 5, p. 647.

    Article  CAS  PubMed  Google Scholar 

  6. Bahr, J.C., Robey, R.W., Luchenko, V., Basseville, A., Chakraborty, A.R., Kozlowski, H., Pauly, G.T., Patel, P., Schneider, J.P., Gottesman, M.M., and Bates, S.E., Blocking downstream signaling pathways in the context of HDAC inhibition promotes apoptosis preferentially in cells harboring mutant Ras, Oncotarget, 2016, vol. 7, p. 69804.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Bolden, J.E., Shi, W., Jankowski, K., Kan, C.-Y., Cluse, L., Martin, B.P., MacKenzie, K.L., Smyth, G.K., and Johnstone, R.W., HDAC inhibitors induce tumor-cell-selective pro-apoptotic transcriptional responses, Cell Death Dis., 2013, vol. 4, p. e519.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bordonaro, M., Lazarova, D.L., Augenlicht, L.H., and Sartorelli, A.C., Cell type- and promoter-dependent modulation of the Wnt signaling pathway by sodium butyrate, Int. J. Cancer, 2002, vol. 97, p. 42.

    Article  CAS  PubMed  Google Scholar 

  9. Bordonaro, M., Lazarova, D.L., and Sartorelli, A.C., The activation of beta-catenin by Wnt signaling mediates the effects of histone deacetylase inhibitors, Exp. Cell Res., 2007, vol. 313, p. 1652.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Buckley, S., Driscoll, B., Barsky, L., Weinberg, K., Anderson, K., and Warburton, D., ERK activation protects against DNA damage and apoptosis in hyperoxic rat AEC2, Am. J. Physiol., 1999, vol. 277, p. L159.

    CAS  PubMed  Google Scholar 

  11. Cagnol, S. and Chambard, J.-C., ERK and cell death: mechanisms of ERK-induced cell death—apoptosis, autophagy and senescence, FEBS J., 2010, vol. 277, p. 2.

    Article  CAS  PubMed  Google Scholar 

  12. Cagnol, S., van Obberghen-Schilling, E., and Chambard, J.-C., Prolonged activation of ERK1,2 induces FADD-independent caspase 8 activation and cell death, Apoptosis Int. J. Program. Cell Death, 2006, vol. 11, p. 337.

    Article  CAS  Google Scholar 

  13. Chakraborty, A.R., Robey, R.W., Luchenko, V.L., Zhan, Z., Piekarz, R.L., Gillet, J.-P., Kossenkov, A.V., Wilkerson, J., Showe, L.C., Gottesman, M.M., Collie, N.L., and Bates, S.E., MAPK pathway activation leads to Bim loss and histone deacetylase inhibitor resistance: rationale to combine romidepsin with an MEK inhibitor, Blood, 2013, vol. 121, p. 4115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Chen, S., Guttridge, D.C., You, Z., Zhang, Z., Fribley, A., Mayo, M.W., Kitajewski, J., and Wang, C.-Y., WNT-1 signaling inhibits apoptosis by activating B-Catenin/T cell factor-mediated transcription, J. Cell Biol., 2001, vol. 152, p. 87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Chien, A.J., Moore, E.C., Lonsdorf, A.S., Kulikauskas, R.M., Rothberg, B.G., Berger, A.J., Major, M.B., Hwang, S.T., Rimm, D.L., and Moon, R.T., Activated Wnt/beta-catenin signaling in melanoma is associated with decreased proliferation in patient tumors and a murine melanoma model, Proc. Natl. Acad. Sci. U. S. A., 2009, vol. 106, p. 1193.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Cho, H.H., Song, J.S., Yu, J.M., Yu, S.S., Choi, S.J., Kim, D.H., and Jung, J.S., Differential effect of NF-kappaB activity on beta-catenin/Tcf pathway in various cancer cells, FEBS Lett., 2008, vol. 582, p. 616.

    Article  CAS  PubMed  Google Scholar 

  17. Chou, C.-W., Wu, M.-S., Huang, W.-C., and Chen, C.-C., HDAC inhibition decreases the expression of EGFR in colorectal cancer cells, PLoS One, 2011, vol. 6. https://doi.org/10.1371/journal.pone.0018087

  18. Conrad, W.H., Swift, R.D., Biechele, T.L., Kulikauskas, R.M., Moon, R.T., and Chien, A.J., Regulating the response to targeted MEK inhibition in melanoma: enhancing apoptosis in NRAS- and BRAF-mutant melanoma cells with Wnt/β-catenin activation, Cell Cycle Georget. Tex., 2012, vol. 11, p. 3724.

    Article  CAS  Google Scholar 

  19. Dimri, G.P., Lee, X., Basile, G., Acosta, M., Scott, G., Roskelley, C., Medrano, E.E., Linskens, M., Rubelj, I., and Pereira-Smith, O., A biomarker that identifies senescent human cells in culture and in aging skin in vivo, Proc. Natl. Acad. Sci. U. S. A., 1995, vol. 92, p. 9363.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Donmez, H.G., Demirezen, S., and Beksac, M.S., The relationship between beta-catenin and apoptosis: a cytological and immunocytochemical examination, Tissue Cell, 2016, vol. 48, p. 160.

    Article  CAS  PubMed  Google Scholar 

  21. Erhardt, P., Schremser, E.J., and Cooper, G.M., B-Raf inhibits programmed cell death downstream of cytochrome c release from mitochondria by activating the MEK/Erk pathway, Mol. Cell. Biol., 1999, vol. 19, p. 5308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Götze, S., Coersmeyer, M., Müller, O., and Sievers, S., Histone deacetylase inhibitors induce attenuation of Wnt signaling and TCF7L2 depletion in colorectal carcinoma cells, Int. J. Oncol., 2014, vol. 45, p. 1715.

    Article  PubMed  CAS  Google Scholar 

  23. Hinnebusch, B.F., Meng, S., Wu, J.T., Archer, S.Y., and Hodin, R.A., The effects of short-chain fatty acids on human colon cancer cell phenotype are associated with histone hyperacetylation, J. Nutr., 2002, vol. 132, p. 1012.

    Article  CAS  PubMed  Google Scholar 

  24. Igotti, M.V., Svetlikova, S.B., and Pospelov, V.A., Overexpression of adenoviral E1A sensitizes E1A+Ras-transformed cells to the action of histone deacetylase inhibitors, Acta Naturae, 2018, vol. 10, p. 70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Insinga, A., Monestiroli, S., Ronzoni, S., Gelmetti, V., Marchesi, F., Viale, A., Altucci, L., Nervi, C., Minucci, S., and Pelicci, P.G., Inhibitors of histone deacetylases induce tumor-selective apoptosis through activation of the death receptor pathway, Nat. Med., 2005, vol. 11, p. 71.

    Article  CAS  PubMed  Google Scholar 

  26. Kageshita, T., Hamby, C.V., Ishihara, T., Matsumoto, K., Saida, T., and Ono, T., Loss of beta-catenin expression associated with disease progression in malignant melanoma, Br. J. Dermatol., 2001, vol. 145, p. 210.

    Article  CAS  PubMed  Google Scholar 

  27. Kim, K., Pang, K.M., Evans, M., and Hay, E.D., Overexpression of beta-catenin induces apoptosis independent of its transactivation function with LEF-1 or the involvement of major G1 cell cycle regulators, Mol. Biol. Cell, 2000, vol. 11, p. 3509.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kim, M.S., Kwon, H.J., Lee, Y.M., Baek, J.H., Jang, J.E., Lee, S.W., Moon, E.J., Kim, H.S., Lee, S.K., Chung, H.Y., Kim, C.W., and Kim, K.W., Histone deacetylases induce angiogenesis by negative regulation of tumor suppressor genes, Nat. Med., 2001, vol. 7, p. 437.

    Article  PubMed  Google Scholar 

  29. Kitagawa, D., Tanemura, S., Ohata, S., Shimizu, N., Seo, J., Nishitai, G., Watanabe, T., Nakagawa, K., Kishimoto, H., Wada, T., Tezuka, T., Yamamoto, T., Nishina, H., and Katada, T., Activation of extracellular signal-regulated kinase by ultraviolet is mediated through Src-dependent epidermal growth factor receptor phosphorylation. Its implication in an anti-apoptotic function, J. Biol. Chem., 2002, vol. 277, p. 366.

    Article  CAS  PubMed  Google Scholar 

  30. Lai, C.-Y., Tsai, A.-C., Chen, M.-C., Chang, L.-H., Sun, H.-L., Chang, Y.-L., Chen, C.-C., Teng, C.-M., and Pan, S.-L., Aciculatin induces p53-dependent apoptosis via MDM2 depletion in human cancer cells in vitro and in vivo, PLoS One, 2012, vol. 7, p. e42192. https://doi.org/10.1371/journal.pone.0042192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lallemand, F., Courilleau, D., Sabbah, M., Redeuilh, G., and Mester, J., Direct inhibition of the expression of cyclin D1 gene by sodium butyrate, Biochem. Biophys. Res. Commun., 1996, vol. 229, p. 163.

    Article  CAS  PubMed  Google Scholar 

  32. Le Henaff, C., Mansouri, R., Modrowski, D., Zarka, M., Geoffroy, V., Marty, C., Tarantino, N., Laplantine, E., and Marie, P.J., Increased NF-κB activity and decreased Wnt/β-catenin signaling mediate reduced osteoblast differentiation and function in ΔF508 cystic fibrosis transmembrane conductance regulator (CFTR) mice, J. Biol. Chem., 2015, vol. 290, p. 18009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Li, Q., Ding, C., Meng, T., Lu, W., Liu, W., Hao, H., and Cao, L., Butyrate suppresses motility of colorectal cancer cells via deactivating Akt/ERK signaling in histone deacetylase dependent manner, J. Pharmacol. Sci., 2017, vol. 135, p. 148.

    Article  CAS  PubMed  Google Scholar 

  34. Lillico, R., Sobral, M.G., Stesco, N., and Lakowski, T.M., HDAC inhibitors induce global changes in histone lysine and arginine methylation and alter expression of lysine demethylases, J. Proteomics, 2016, vol. 133, p. 125.

    Article  CAS  PubMed  Google Scholar 

  35. Lim, S.-C., Duong, H.-Q., Parajuli, K.R., and Han, S.I., Pro-apoptotic role of the MEK/ERK pathway in ursodeoxycholic acid-induced apoptosis in SNU601 gastric cancer cells, Oncol. Rep., 2012, vol. 28, p. 1429.

    Article  CAS  PubMed  Google Scholar 

  36. Liu, K., Zhang, X., Zhang, J.T., Tsang, L.L., Jiang, X., and Chan, H.C., Defective CFTR- B-catenin interaction promotes NF-κB nuclear translocation and intestinal inflammation in cystic fibrosis, Oncotarget, 2016, vol. 7, p. 64030.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Lu, Z. and Xu, S., ERK1/2 MAP kinases in cell survival and apoptosis, IUBMB Life, 2006, vol. 58, p. 621.

    Article  CAS  PubMed  Google Scholar 

  38. Luchenko, V.L., Litman, T., Chakraborty, A.R., Heffner, A., Devor, C., Wilkerson, J., Stein, W., Robey, R.W., Bangiolo, L., Levens, D., and Bates, S.E., Histone deacetylase inhibitor-mediated cell death is distinct from its global effect on chromatin, Mol. Oncol., 2014, vol. 8, p. 1379.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ma, C., Bower, K.A., Chen, G., Shi, X., Ke, Z.-J., and Luo, J., Interaction between ERK and GSK3beta mediates basic fibroblast growth factor-induced apoptosis in SK-N-MC neuroblastoma cells, J. Biol. Chem., 2008, vol. 283, p. 9248.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Maelandsmo, G.M., Holm, R., Nesland, J.M., Fodstad, Ø., and Flørenes, V.A., Reduced beta-catenin expression in the cytoplasm of advanced-stage superficial spreading malignant melanoma, Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res., 2003, vol. 9, p. 3383.

    CAS  Google Scholar 

  41. Mandal, R., Raab, M., Matthess, Y., Becker, S., Knecht, R., and Strebhardt, K., pERK 1/2 inhibit caspase-8 induced apoptosis in cancer cells by phosphorylating it in a cell cycle specific manner, Mol. Oncol., 2014, vol. 8, p. 232.

    Article  CAS  PubMed  Google Scholar 

  42. Mebratu, Y. and Tesfaigzi, Y., How ERK1/2 activation controls cell proliferation and cell death: is subcellular localization the answer?, Cell Cycle Georget. Tex., 2009, vol. 8, p. 1168.

    Article  CAS  Google Scholar 

  43. Meyer, S., Fuchs, T.J., Bosserhoff, A.K., Hofstädter, F., Pauer, A., Roth, V., Buhmann, J.M., Moll, I., Anagnostou, N., Brandner, J.M., Ikenberg, K., Moch, H., Landthaler, M., Vogt, T., and Wild, P.J., A seven-marker signature and clinical outcome in malignant melanoma: a large-scale tissue-microarray study with two independent patient cohorts, PLoS One, 2012, vol. 7.

  44. Morin, P.J., Vogelstein, B., and Kinzler, K.W., Apoptosis and APC in colorectal tumorigenesis, Proc. Natl. Acad. Sci. U. S. A., 1996, vol. 93, p. 7950.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Nagata, Y. and Todokoro, K., Requirement of activation of JNK and p38 for environmental stress-induced erythroid differentiation and apoptosis and of inhibition of ERK for apoptosis, Blood, 1999, vol. 94, p. 853.

    Article  CAS  PubMed  Google Scholar 

  46. Nejak-Bowen, K., Kikuchi, A., and Monga, S.P.S., Beta-catenin–NF-κB interactions in murine hepatocytes: a complex to die for, Hepatol. Baltim. Md., 2013, vol. 57, p. 763.

    Article  CAS  Google Scholar 

  47. Park, J.S., Carter, S., Reardon, D.B., Schmidt-Ullrich, R., Dent, P., and Fisher, P.B., Roles for basal and stimulated P21(Cip-1/WAF1/MDA6) expression and mitogen-activated protein kinase signaling in radiation-induced cell cycle checkpoint control in carcinoma cells, Mol. Biol. Cell, 1999, vol. 10, p. 4231.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Pospelova, T.V., Medvedev, A.V., Kukushkin, A.N., Svetlikova, S.B., van der Eb, A.J., Dorsman, J.C., and Pospelov, V.A., E1A + cHa-ras transformed rat embryo fibroblast cells are characterized by high and constitutive DNA binding activities of AP-1 dimers with significantly altered composition, Gene Expr., 1999, vol. 8, p. 19.

    CAS  PubMed  Google Scholar 

  49. Rasola, A., Sciacovelli, M., Chiara, F., Pantic, B., Brusilow, W.S., and Bernardi, P., Activation of mitochondrial ERK protects cancer cells from death through inhibition of the permeability transition, Proc. Natl. Acad. Sci. U. S. A., 2010, vol. 107, p. 726.

    Article  CAS  PubMed  Google Scholar 

  50. Shao, N., Zou, J., Li, J., Chen, F., Dai, J., Qu, X., Sun, X., Ma, D., and Ji, C., Hyper-activation of WNT/β-catenin signaling pathway mediates anti-tumor effects of histone deacetylase inhibitors in acute T lymphoblastic leukemia, Leuk. Lymphoma, 2012, vol. 53, p. 1769.

    Article  CAS  PubMed  Google Scholar 

  51. Stang, S.L., Lopez-Campistrous, A., Song, X., Dower, N.A., Blumberg, P.M., Wender, P.A., and Stone, J.C., A proapoptotic signaling pathway involving RasGRP, Erk, and Bim in B cells, Exp. Hematol., 2009, vol. 37, p. 122.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Tammina, S.K., Mandal, B.K., Ranjan, S., and Dasgupta, N., Cytotoxicity study of Piper nigrum seed mediated synthesized SnO2 nanoparticles towards colorectal (HCT116) and lung cancer (A549) cell lines, J. Photochem. Photobiol. B, 2017, vol. 166, p. 158.

    Article  CAS  PubMed  Google Scholar 

  53. Wang, Y., Tang, H., He, G., Shi, Y., Kang, X., Lyu, J., Zhou, M., Zhu, M., Zhang, J., and Tang, K., High concentration of aspirin induces apoptosis in rat tendon stem cells via inhibition of the Wnt/β-catenin pathway, Cell. Physiol. Biochem. Int. J. Exp. Cell. Physiol. Biochem. Pharmacol., 2018, vol. 50, p. 2046.

    Article  CAS  Google Scholar 

  54. Wang, H., Chi, C.-H., Zhang, Y., Shi, B., Jia, R., and Wang, B.-J., Effects of histone deacetylase inhibitors on ATP-binding cassette transporters in lung cancer A549 and colorectal cancer HCT116 cells, Oncol. Lett., 2019, vol. 18, p. 63.

    PubMed  PubMed Central  Google Scholar 

  55. Willert, K. and Jones, K.A., Wnt signaling: is the party in the nucleus?, Genes Dev., 2006, vol. 20, p. 1394.

    Article  CAS  PubMed  Google Scholar 

  56. Yu, X.-D., Wang, S.-Y., Chen, G.A., Hou, C.-M., Zhao, M., Hong, J.A., Nguyen, D.M., and Schrump, D.S., Apoptosis induced by depsipeptide FK228 coincides with inhibition of survival signaling in lung cancer cells, Cancer J. Sudbury Mass., 2007, vol. 13, p. 105.

    Article  CAS  Google Scholar 

  57. Zimmerman, Z.F., Kulikauskas, R.M., Bomsztyk, K., Moon, R.T., and Chien, A.J., Activation of Wnt/β-catenin signaling increases apoptosis in melanoma cells treated with trail, PLoS One, 2013, vol. 8, p. e69593. https://doi.org/10.1371/journal.pone.0069593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the Committee for Science and Higher School at the Government of St. Petersburg and by the Foundation of the Director of the Institute of Cytology of the Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Igotti.

Ethics declarations

The authors declare that they have no conflicts of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Accepted abbreviations: HDAC—histone deacetylases; HDACi— HDAC inhibitor; SA β-Gal—senescence-associated beta-galactosidase.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gnedina, O.O., Igotti, M.V. Effect of Sodium Butyrate on Proliferative Signaling Cascades in Sensitive and Resistant to Histone Deacetylase Inhibitors Cells. Cell Tiss. Biol. 15, 236–247 (2021). https://doi.org/10.1134/S1990519X21030020

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990519X21030020

Keywords:

Navigation