Log in

A study of extracellular vesicles isolated from blood plasma conducted by low-voltage scanning electron microscopy

  • Published:
Cell and Tissue Biology Aims and scope Submit manuscript

Abstract

Extracellular vesicles secreted by cells represent an almost spherical membrane structures enriched with biological molecules of different types. The number and molecular composition of these structures depend on both the physiological state of an organism and underlying diseases. Despite extracellular vesicles playing an important role in intercellular communication and being potential biomarkers of pathological processes, the mechanisms of their formation, their functions, and their morphological characteristics are poorly studied. Low-voltage scanning electron microscopy is a promising method for studying extracellular vesicles, since it does not need a layer of conductive covering and, consequently, permits morphological details of studied objects to be vizualized at a high resolution in a nanometer range. The results of investigation of the morphology and sizes of objects in blood-plasma fractions by low-voltage scanning electron microscopy are presented in this study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Brazil)

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

SEM:

scanning electron microscopy

LVSEM:

low-voltage SEM

TEM:

transmission electron microscopy

References

  • Bobrie, A., Colombo, M., Krumeich, S., Raposo, G., and Thery, C., Diverse subpopulations of vesicles secreted by different intracellular mechanisms are present in exosome preparations obtained by differential ultracentrifugation, J. Extracell. Vesicles, 2012, vol. 16. doi 10.3402/jev.v1i0.18397

    Google Scholar 

  • Cazaux, J., From the physics of secondary electron emission to image contrasts in scanning electron microscopy, J. Electron Microsc., 2012, vol. 61, pp. 261–284.

    Article  Google Scholar 

  • Chernyshev, V.S., Rachamadugu, R., Tseng, Y.H., Belnap, D.M., Jia, Y., Branch, K.J., Butterfield, A.E., Pease, L.F., Bernard, P.S., and Skliar, M., Size and shape characterization of hydrated and desiccated exosomes, Anal. Bioanal. Chem., 2015, vol. 407, pp. 3285–3301.

    Article  CAS  PubMed  Google Scholar 

  • Crescitelli, R., Lasser, C., Szabo, T.G., Kittel, A., Eldh, M., Dianzani, I., Buzas, E.I., and Lotvall, J., Distinct RNA profiles in subpopulations of extracellular vesicles: apoptotic bodies, microvesicles and exosomes, J. Extracell. Vesicles, 2013, vol. 12. doi 10.3402/jev.v2i0.20677

    Google Scholar 

  • Enderle, D., Spiel, A., Coticchia, C.M., Berghoff, E., Mueller, R., Schlumpberger, M., Sprenger-Haussels, M., Shaffer, J.M., Lader, E., Skog, J., and Noerholm, M., Characterization of RNA from exosomes and other extracellular vesicles isolated by a novel spin column-based method, PLoS One, 2015, vol. 10, p. e0136133.

    Google Scholar 

  • Gangoda, L., Boukouris, S., Liem, M., Kalra, H., and Mathivanan, S., Extracellular vesicles including exosomes are mediators of signal transduction: are they protective or pathogenic? Proteomics, 2015, vol. 5, pp. 260–271.

    Article  Google Scholar 

  • Gluschankof, P., Mondor, I., Gelderblom, H.R., and Sattentau, Q.J., Cell membrane vesicles are a major contaminant of gradient-enriched human immunodeficiency virus type-1 preparations, Virology, 1997, vol. 230, pp. 125–133.

    Article  CAS  PubMed  Google Scholar 

  • Goldberg, M.W. and Fiserova, J., Immunogold labelling for scanning electron microscopy, Methods Mol. Biol., 2010, vol. 657, pp. 297–313.

    Article  CAS  PubMed  Google Scholar 

  • Goldstein, J., Newbury, D.E., Joy, D.C., Lyman, C.E., Echlin, P., Lifshin, E., Sawyer, L., and Michael, J.R., Scanning Electron Microscopy and X-Ray Microanalysis, New York: Springer, 2003.

    Book  Google Scholar 

  • Gyorgy, B., Modos, K., Pallinger, E., Paloczi, K., Pasztoi, M., Misjak, P., Deli, M.A., Sipos, A., Szalai, A., Voszka, I., Polgar, A., Toth, K., Csete, M., Nagy, G., Gay, S., Falus, A., Kittel, A., and Buzas, E.I., Detection and isolation of cell-derived microparticles are compromised by protein complexes due to shared biophysical parameters, Blood, 2011a, vol. 117, pp. e39–e48.

    Article  CAS  PubMed  Google Scholar 

  • Gyorgy, B., Szabo, T.G., Pasztoi, M., Pal, Z., Misjak, P., Aradi, B., Laszlo, V., Pallinger, E., Pap, E., Kittel, A., Nagy, G., Falus, A., and Buzas, E.I., Membrane vesicles, current state-of-the-art: emerging role of extracellular vesicles, Cell. Mol. Life Sci., 2011b, vol. 68, pp. 2667–2688.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Extracellular Vesicles in Health and Disease, Harrison, P., Gardiner, C., and Sargent, I.L., Eds., New York: Pan Stanford Publ., 2014.

  • Hughes, M., Hayward, C.P., Warkentin, T.E., Horsewood, P., Chorneyko, K.A., and Kelton, J.G., Morphological analysis of microparticle generation in heparininduced thrombocytopenia, Blood, 2000, vol. 96, pp. 188–194.

    CAS  PubMed  Google Scholar 

  • Kondratov, K., Kurapeev, D., Popov, M., Sidorova, M., Minasian, S., Galagudza, M., Kostareva, A., and Fedorov, A., Heparinase treatment of heparin-contaminated plasma from coronary artery bypass grafting patients enables reliable quantification of microRNAs, Biomol. Detect. Quantif., 2016, vol. 8, pp. 9–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koren’kov, D.A., Ovchinnikova, O.M., Sel’kov, S.A., and Sokolov, D.I., Role of microparticles in intercellular communication, Tsitologiia, 2014, vol. 56, no. 7, pp. 480–488.

    PubMed  Google Scholar 

  • Kourembanas, S., Exosomes: vehicles of intercellular signaling, biomarkers, and vectors of cell therapy, Annu. Rev. Physiol., 2015, vol. 77, pp. 13–27.

    Article  CAS  PubMed  Google Scholar 

  • Kulikova, T., Khodyuchenko, T., Petrov, Y., and Krasikova, A., Low-voltage scanning electron microscopy study of lampbrush chromosomes and nuclear bodies in avian and amphibian oocytes, Sci. Rep., 2016, vol. 6, p. 36878. doi 10.1038/srep36878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lacroix, R., Judicone, C., Poncelet, P., Robert, S., Arnaud, L., Sampol, J., and Dignat-George, F., Impact of pre-analytical parameters on the measurement of circulating microparticles: towards standardization of protocol, J. Thromb. Haemost., 2012, vol. 10, pp. 437–446.

    Article  CAS  PubMed  Google Scholar 

  • Laemmli, U.K., Cleavage of structural proteins during the assembly of the head of bacteriophage T4, Nature, 1970, vol. 227, pp. 680–685.

    Article  CAS  PubMed  Google Scholar 

  • Linares, R., Tan, S., Gounou, C., Arraud, N., and Brisson, A.R., High-speed centrifugation induces aggregation of extracellular vesicles, J. Extracell. Vesicles, 2015, vol. 4, p. 29509.

    Article  PubMed  Google Scholar 

  • Masyuk, A.I., Huang, B.Q., Ward, C.J., Gradilone, S.A., Banales, J.M., Masyuk, T.V., Radtke, B., Splinter, P.L., and LaRusso, N.F., Biliary exosomes influence cholangiocyte regulatory mechanisms and proliferation through interaction with primary cilia, Am. J. Physiol. Gastrointest. Liver Physiol., 2010, vol. 299, pp. G990–G999.

    Google Scholar 

  • Mrvar-Brecko, A., Sustar, V., Jansa, V., Stukelj, R., Jansa, R., Mujagic, E., Kruljc, P., Iglic, A., Hagerstrand, H., and Kralj-Iglic, V., Isolated microvesicles from peripheral blood and body fluids as observed by scanning electron microscope, Blood Cells. Mol. Dis., 2010, vol. 44, pp. 307–312.

    Article  CAS  PubMed  Google Scholar 

  • Nguyen, D.B., Ly, T.B., Wesseling, M.C., Hittinger, M., Torge, A., Devitt, A., Perrie, Y., and Bernhardt, I., Characterization of microvesicles released from human red blood cells, Cell Physiol. Biochem., 2016, vol. 38, pp. 1085–1099.

    Article  CAS  PubMed  Google Scholar 

  • Osumi, M., Yamada, N., Kobori, H., Taki, A., Naito, N., Baba, M., and Nagatani, T., Cell wall formation in regenerating protoplasts of schizosaccharomyces pombe: study by high resolution, low voltage scanning electron microscopy, J. Electron Microsc. (Tokyo), 1989, vol. 38, pp. 457–468.

    CAS  Google Scholar 

  • Paolini, L., Zendrini, A., Di, Noto, G., Busatto, S., Lottini, E., Radeghieri, A., Dossi, A., Caneschi, A., Ricotta, D., and Bergese, P., Residual matrix from different separation techniques impacts exosome biological activity, Sci. Rep., 2016, vol. 6, pp. 23550.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Biological Low-voltage Scanning Electron Microscopy, Pawley, J. and Schatten, H., Eds., New York: Springer-Verlag, 2008.

  • Peramo, A. and Diaz, J.A., Physical characterization of mouse deep vein thrombosis derived microparticles by differential filtration with nanopore filters, Membranes (Basel), 2011, vol. 2, pp. 1–15.

    Article  Google Scholar 

  • Ramachandran, S. and Palanisamy, V., Horizontal transfer of RNAs: exosomes as mediators of intercellular communication, Wiley Interdiscip. Rev. RNA, 2012, vol. 3, pp. 286–293.

    Article  CAS  PubMed  Google Scholar 

  • Raposo, G., and Stoorvogel, W., Extracellular vesicles: exosomes, microvesicles, and friends, J. Cell. Biol., 2013, vol. 200, pp. 373–383.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rood, I.M., Deegens, J.K., Merchant, M.L., Tamboer, W.P., Wilkey, D.W., Wetzels, J.F., and Klein, J.B., Comparison of three methods for isolation of urinary microvesicles to identify biomarkers of nephrotic syndrome, Kidney Int., 2010, vol. 78, pp. 810–816.

    Article  CAS  PubMed  Google Scholar 

  • Schroeder-Reiter, E., Houben, A., and Wanner, G., Immunogold labeling of chromosomes for scanning electron microscopy: a closer look at phosphorylated histone H3 in mitotic metaphase chromosomes of Hordeum vulgare, Chromosome Res., 2003, vol. 11, pp. 585–596.

    Article  CAS  PubMed  Google Scholar 

  • Sharma, S., Rasool, H.I., Palanisamy, V., Mathisen, C., Schmidt, M., Wong, D.T., and Gimzewski, J.K., Structural-mechanical characterization of nanoparticle exosomes in human saliva, using correlative AFM, FESEM, and Force Spectroscopy, ACS. Nano, 2010, vol. 4, pp. 1921–1926.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sokolova, V., Ludwig, A.K., Hornung, S., Rotan, O., Horn, P.A., Epple, M., and Giebel, B., Characterisation of exosomes derived from human cells by nanoparticle tracking analysis and scanning electron microscopy, Colloids Surf. B. Biointerfaces, 2011, vol. 87, pp. 146–150.

    Article  CAS  PubMed  Google Scholar 

  • Shtam, T.A., Naryzhny, S.N., Landa, S.B., Burdackov, V.S., Artamonova, T.O., and Filatov, M.V., Purification and in vitro analysis of exosomes secreted by malignantly transformed human cells, Cell Tissue Biol., 2012, vol. 6, no. 4, pp. 317–325.

    Article  Google Scholar 

  • Van der Pol, E., Boing, A.N., Gool, E.L., and Nieuwland, R., Recent developments in the nomenclature, presence, isolation, detection and clinical impact of extracellular vesicles, J. Thromb. Haemost., 2016, vol. 14, pp. 48–56.

    Article  PubMed  Google Scholar 

  • Van der Pol, E., Hoekstra, A.G., Sturk, A., Otto, C., van, Leeuwen, T.G., and Nieuwland, R., Optical and non-optical methods for detection and characterization of microparticles and exosomes, J. Thromb. Haemost., 2010, vol. 8, pp. 2596–2607.

    Article  PubMed  Google Scholar 

  • Vyas, N., Walvekar, A., Tate, D., Lakshmanan, V., Bansal, D., Lo, Cicero, A., Raposo, G., Palakodeti, D., and Dhawan, J., Vertebrate hedgehog is secreted on two types of extracellular vesicles with different signaling properties, Sci. Rep., 2014, vol. 4, pp. 7357.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, J., Yang, C., Hans, R., and Zhai, Z., Fine structure and assembly in vitro of nuclear lamina in plant cells, Sci. China C. Life Sci., 1998, vol. 41, pp. 71–79.

    Article  CAS  PubMed  Google Scholar 

  • Witwer, K.W., Buzas, E.I., Bemis, L.T., Bora, A., Lasser, C., Lotvall, J., Nolte-'t Hoen, E.N., Piper, M.G., Sivaraman, S., Skog, J., Thery, C., Wauben, M.H., and Hochberg, F., Standardization of sample collection, isolation and analysis methods in extracellular vesicle research, J. Extracell. Vesicles, 2013, vol. 27, p. 2.

    Google Scholar 

  • Yuana, Y., Koning, R.I., Kuil, M.E., Rensen, P.C., Koster, A.J., Bertina, R.M., and Osanto, S., Cryo-electron microscopy of extracellular vesicles in fresh plasma, J. Extracell. Vesicles, 2013, vol. 2. doi 10.3402/jev.v2i0.21494

    Google Scholar 

  • Yuana, Y., Boing, A.N., Grootemaat, A.E., van der Pol, E., Hau, C.M., Czimar, P., Buhr, E., Sturk, A., and Nieuwland, R., Handling and storage of human body fluids for analysis of extracellular vesicles, J. Extracell. Vesicles, 2015, vol. 4, p. 29260.

    Article  PubMed  Google Scholar 

  • Zhou, J., Ghoroghi, S., Benito-Martin, A., Wu, H., Unachukwu, U.J., Einbond, L.S., Guariglia, S., Peinado, H., and Redenti, S., Characterization of induced pluripotent stem cell microvesicle genesis, morphology and pluripotent content, Sci. Rep., 2016, vol. 6, p. 19743.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. A. Kondratov.

Additional information

Original Russian Text © K.A. Kondratov, T.A. Petrova, V.Yu. Mikhailovskii, A.N. Ivanova, A.A. Kostareva, A.V. Fedorov, 2017, published in Tsitologiya, 2017, Vol. 59, No. 3, pp. 169–177.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kondratov, K.A., Petrova, T.A., Mikhailovskii, V.Y. et al. A study of extracellular vesicles isolated from blood plasma conducted by low-voltage scanning electron microscopy. Cell Tiss. Biol. 11, 181–190 (2017). https://doi.org/10.1134/S1990519X17030051

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990519X17030051

Keywords

Navigation