Log in

A Method for Automatic Search for Families of Optimal Chordal Ring Networks

  • Published:
Journal of Applied and Industrial Mathematics Aims and scope Submit manuscript

Abstract

Arden and Lee proposed a class of chordal ring networks of degree three as communication networks for multicomputer systems, derived a formula for the diameter, and produced an algorithm for finding the shortest paths for them. In this paper, it is shown that the formula for the diameter and the routing algorithm presented by them are inaccurate. We have obtained a large dataset containing parameters for describing optimal diameter chord rings for all the numbers of nodes up to 60 000 and found the exact lower bound for the diameter of chordal ring networks. A new method is proposed and the algorithms for automatic search for analytical descriptions of families of optimal chordal rings are realized based on an analysis of the database. Using the latter, analytical descriptions of over 500 new families of optimal chordal ring networks for many values of the number of nodes are found (only six families have been known until now in the literature).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

REFERENCES

  1. B. W. Arden and H. Lee, “Analysis of chordal ring network,” IEEE Trans. Comput. C-30 (4), 291–295 (1981).

    Article  MathSciNet  Google Scholar 

  2. P. Morillo, F. Comellas, and M. A. Fiol, “The optimization of chordal ring networks,” in Communication Technology (World Sci., Singapore, 1987), 295–299.

  3. J. L. A. Yebra, M. A. Fiol, P. Morillo, and I. Alegre, “The diameter of undirected graphs associated to plane tessellations,” Ars Comb. 20-B, 159–171 (1985).

    MathSciNet  Google Scholar 

  4. J. C. Bermond, F. Comellas, and D. F. Hsu, “Distributed loop computer-networks: A survey,” J. Parallel Distrib. Comput. 24 (1), 2–10 (1995).

    Article  Google Scholar 

  5. F. K. Hwang, “A survey on multi-loop networks,” Theor. Comput. Sci. (299), 107–121 (2003).

  6. E. A. Monakhova, “A survey on undirected circulant graphs,” Discrete Math. Algorithms Appl. 4 (1), 1250002 (2012).

    Article  MathSciNet  Google Scholar 

  7. J. M. Pedersen, M. T. Riaz, and O. B. Madsen, “Distances in generalized double rings and degree three chordal rings,” Parallel Distrib. Comput. Networks. Proc. IASTED Int. Conf. (Innsbruck, Austria, February 15–17, 2005), (ACTA Press, Calgary, 2005), 153–158.

  8. B. Parhami, “Periodically regular chordal rings are preferable to double-ring networks,” J. Interconnect. Networks 9, (1), 99–126 (2008).

    Article  Google Scholar 

  9. R. N. Farah, S. L. E. Chien, and M. Othman, “Optimum free-table routing in the optimised degree six 3-modified chordal ring network,” J. Commun. 12 (12), 677–682 (2017).

    Article  Google Scholar 

  10. F. K. Hwang and P. E. Wright, “Survival reliability of some double-loop networks and chordal rings,” IEEE Trans. Comput. 44 (12), 1468–1471 (1995).

    Article  Google Scholar 

  11. S. K. Chen, F. K. Hwang, and Y. C. Liu, “Some combinatorial properties of mixed chordal rings,” J. Interconnect. Networks 4 (1), 3–16 (2003).

    Article  Google Scholar 

  12. I. Stojmenović, “Honeycomb networks: Topological properties and communication algorithms,” IEEE Trans. Parallel Distrib. Syst. 8, 281–305 (1997).

    Article  Google Scholar 

  13. M. Ahmad, Z. Zahid, M. Zavaid, and E. Bonyah, “Studies of chordal ring networks via double metric dimensions,” Math. Probl. Eng. 98, 8303242 (2022).

    Google Scholar 

  14. S. Bujnowski, B. Marciniak, O. O. Oyerinde, Z. Lutowski, A. Flizikowski, and S. G. Galan, “The possibility of equalising the transmission properties of networks described by chordal rings,” Proc. 15th Int. Conf. Signal Process. Commun. Syst. (Sydney, Australia, December 13–15, 2021), (IEEE, Piscataway, 2021).

  15. N. Irwan, M. Othman, and R. N. Farah, “Network properties for classes of chordal ring network degree three topologies,” 2010 Proc. Int. Conf. Intell. Network Comput. (Kuala Lumpur, Malaysia, November 26–28, 2010), (IEEE, Piscataway, 2010), 16–20.

  16. O. G. Monakhov and E. A. Monakhova, “A class of parametric regular networks for multicomputer architectures,” Comput. Syst. J. 4 (2), 85–93 (2000).

    Google Scholar 

  17. H.-C. Huang, “The diameter-edge invariant property of chordal ring networks,” Master Thesis (Natl. Chiao Tung Univ., Hsinchu, 2009).

  18. L. Loudiki, M. Kchkech, and E. H. Essaky, “A new approach for computing the distance and the diameter in circulant graphs,” (Cornell Univ., Ithaca, NY, 2022), e-Print Archive .

  19. O. G. Monakhov, E. A. Monakhova, and S. E. Kireev, “Parallel generation and analysis of optimal chordal ring networks using Python tools on Kunpeng processors,” Parallel Comput. Technol. Proc. 17th Int. Conf. (Astana, Kazakhstan, August 21–25, 2023), (Springer, Cham, 2023), 126–135 (Lect. Notes Comput. Sci. 14098).

  20. R. A. Mollin, “Quadratic polynomials producing consecutive, distinct primes and class groups of complex quadratic fields,” Acta Arithmetica 74, 17–30 (1996).

    Article  MathSciNet  Google Scholar 

  21. N. Marwan, M. C. Romano, M. Thiel, and J. Kurths, “Recurrence plots for the analysis of complex systems,” Phys. Rep. 438 (5–6), 237–329 (2007).

    Article  MathSciNet  Google Scholar 

  22. L. Barriere, “Symmetry properties of chordal rings of degree 3,” Discrete Appl. Math. 129, 211–232 (2003).

    Article  MathSciNet  Google Scholar 

  23. H. Lee, “Modeling of multi-microcomputer networks,” PhD Thesis (Princeton Univ., Princeton, NJ, 1979).

  24. J. Gutierrez, T. Riaz, J. Pedersen, S. Labeaga, and O. Madsen, “Degree 3 networks topological routing,” Image Process. Commun. 14 (4), 35–48 (2009).

    Google Scholar 

  25. J. Gutierrez, T. Riaz, J. Pedersen, S. Labeaga, and O. Madsen, “On topological routing on degree 3 chordal rings,” Proc. 1st Int. Conf. Image Process. & Commun. (Bydgoszcz, Poland, September 16–18, 2009), (Acad. Publ. House EXIT, Warsaw, 2009), 59020255.

  26. E. A. Monakhova, O. G. Monakhov, and A. Yu. Romanov, “Routing algorithms in optimal degree four circulant networks based on relative addressing: Comparative analysis for networks-on-chip,” IEEE Trans. Network Sci. Eng. 10 (1), 413–425 (2023).

    Article  MathSciNet  Google Scholar 

Download references

Funding

This research was carried out within framework of state assignment of the Institute of Computational Mathematics and Mathematical Geophysics of the Siberian Branch of the Russian Academy of Sciences under agreement no. FWNM–2022–0005.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to E. A. Monakhova or O. G. Monakhov.

Additional information

Translated by V. Potapchouck

CONFLICT OF INTEREST. The authors of this work declare that they have no conflicts of interest.

Publisher’s Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Monakhova, E.A., Monakhov, O.G. A Method for Automatic Search for Families of Optimal Chordal Ring Networks. J. Appl. Ind. Math. 18, 122–136 (2024). https://doi.org/10.1134/S1990478924010113

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990478924010113

Keywords

Navigation