Log in

Effects of Intrathecal Administration of Prostaglandin-D2 on Stress-Induced Analgesia: Involvements of DP2 Receptors

  • EXPERIMENTAL ARTICLES
  • Published:
Neurochemical Journal Aims and scope Submit manuscript

Abstract

Prostaglandin D2 is the most abundant prostaglandin in the mammalian brain. Exposure to stressful stimuli is often accompanied by reduced pain sensitivity, termed “stress-induced analgesia” (SIA). In the present study, the possible modulatory role of prostaglandin-D2 (PGD2) in the acute or chronic type of SIA was examined in male and female rats. Acute and chronic (long-term) restraint stress (RS) in male and female rats was performed prior to intraplantar injections of formalin, a noxious inflammatory agent. The involvements of specific PGD2 receptors in the modulatory role of PGD2 on SIA also investigated by specific antagonists (DP1 or DP2). Corticosterone levels were assessed in groups of rats following exposure to stress. Acute or chronic restraint stress altered formalin-induced spontaneous behaviors in male and female rats. Furthermore, intrathecal microinjection of PGD2 (10 µg/mL) could reverse acute SIA in male but not in female rats. DP2 antagonist of PGD2 (CAY10471) attenuated pain score in the acute RS-induced analgesia in male rats. Administration of PGD2 increases the phospho-extracellular signal regulated kinase 2 (pERK2) levels in the spinal cord of male RS rats. Sex differences were also seen in plasma corticosterone concentrations post injection of PGD2 in acute SIA in male rats. The outcome suggests that not only central microinjection of PGD2 could attenuate acute SIA in male rats, but also its antagonist could turn over this effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Butler, R.K. and Finn, D.P., Progr. Neurobiol., 2009, vol. 88, no. 3, pp. 184–202.

    Article  CAS  Google Scholar 

  2. Hohmann, A.G., Suplita, R.L., Bolton, N.M., Neely, M.H., Fegley, D., Mangieri, R., Krey, J.F., Michael Walker, J., Holmes, P.V., and Crystal, J.D., Nature, 2005, vol. 435, no. 7045, pp. 1108–1112.

    Article  CAS  PubMed  Google Scholar 

  3. Thomson, J.S., Deakin, A.G., Cossins, A.R., Spencer, J.W., Young, I.S., and Sneddon, L.U., J. Exp. Biol., 2020, vol. 223, no. 14, p. jeb224527.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Crettaz, B., Marziniak, M., Willeke, P., Young, P., Hellhammer, D., Stumpf, A., and Burgmer, M., PLoS One, 2013, vol. 8, no. 8, p. e69460.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ma, W., Li, L. and **ng, S., Brain Res., 2019, vol. 1721, p. 146335.

    Article  CAS  PubMed  Google Scholar 

  6. Bhattacharya, S.K., Keshary, P.R., and Sanyal, A.K., Eur. J. Pharmacol., 1978, vol. 50, no. 1, pp. 83–85.

    Article  CAS  PubMed  Google Scholar 

  7. Furuyashiki, T. and Narumiya, S., Curr. Opin. Pharmacol., 2009, vol. 9, no. 1, pp. 31–38.

    Article  CAS  PubMed  Google Scholar 

  8. Yin, W., Swanson, S.P., Biltz, R.G., Goodman, E.J., Gallagher, N.R., Sheridan, J.F., and Godbout, J.P., Neuropsychopharmacol., 2022, pp. 1–12.

  9. Schaible, H.-G., Ebersberger, A., and Natura, G., Arthritis Res. Ther., 2011, vol. 13, no. 2, pp. 1–8.

    Article  Google Scholar 

  10. Horie, H., Matsuyama, T., Namba, M., Nonaka, K., and Tarui, S., Prostaglandins, Leukotrienes Med., 1983, vol. 12, no. 3, pp. 315–321.

    Article  CAS  Google Scholar 

  11. Elshareif, N., Gavini, C.K., and Mansuy-Aubert, V., Sci. Rep., 2022, vol. 12, no. 1, pp. 1–10.

    Article  Google Scholar 

  12. Uda, R., Horiguchi, S., Ito, S., Hyodo, M., and Hayaishi, O., Brain Res., 1990, vol. 510, no. 1, pp. 26–32.

    Article  CAS  PubMed  Google Scholar 

  13. Vanegas, H. and Schaible, H.-G., Progr. Neurobiol., 2001, vol. 64, no. 4, pp. 327–363.

    Article  CAS  Google Scholar 

  14. Ebersberger, A., Natura, G., Eitner, A., Halbhuber, K.-J., Rost, R. and Schaible, H.-G., Pain, 2011, vol. 152, no. 5, pp. 1114–1126.

    Article  CAS  PubMed  Google Scholar 

  15. Imbe, H., Murakami, S., Okamoto, K., Iwai-Liao, Y., and Senba, E., Pain, 2004, vol. 112, no. 3, pp. 361–371.

    Article  PubMed  Google Scholar 

  16. Rubinfeld, H. and Seger, R., Mol. Biotechnol., 2005, vol. 31, no. 2, pp. 151–174.

    Article  CAS  PubMed  Google Scholar 

  17. Ma, J., Yang, Q., Wei, Y., Yang, Y., Ji, C., Hu, X., Mai, S., Kuang, S., Tian, X., and Luo, Y., Sci. Rep., 2016, vol. 6, no. 1, pp. 1–11.

    Article  CAS  Google Scholar 

  18. Andreeva, L. and Rang, H., Brit. J. Pharmacol., 1993, vol. 108, no. 1, pp. 185–190.

    Article  CAS  Google Scholar 

  19. Ohkubo, T., Shibata, M., Takahashi, H., and Inoki, R., Japan. J. Pharmacol., 1983, vol. 33, no. 1, pp. 264–266.

    Article  CAS  Google Scholar 

  20. Bhattacharya, S., Rao, P.M., and Gupta, G.D., J. Pharm. Pharmacol., 1989, vol. 41, no. 8, pp. 569–571.

    Article  CAS  PubMed  Google Scholar 

  21. Mohammadi, S., Oryan, S., Komaki, A., Eidi, A., and Zarei, M., Int. J. Peptide Res. Ther., 2020, vol. 26, no. 1, pp. 357–367.

    Article  CAS  Google Scholar 

  22. Mohammadi, S. and Golshani, Y., J. Adv. Neurosci. Res., 2017, vol. 4, no. 2, pp. 30–37.

    Article  Google Scholar 

  23. Torres, I.L.S., Buffon, A., Silveira, P.P., Duarte, M.Z., Bassani, M.G., Oliveira, S.S., Battastini, A.M.O., Sarkis, J.J., Dalmaz, C., and Ferreira, M.B.C., Physiol. Behav., 2002, vol. 75, nos. 1–2, pp. 1–5.

    Article  CAS  PubMed  Google Scholar 

  24. Dubuisson, D. and Dennis, S.G., Pain, 1978, vol. 4, pp. 161–174.

  25. Fallahzadeh, A.R., Zarei, M., and Mohammadi, S., Entomol. Appl. Sci. Lett., 2016, vol. 3, no. 5, pp. 140–147.

    Google Scholar 

  26. Sadler, K.E., Stratton, J.M., DeBerry, J.J., and Kolber, B.J., PLoS One, 2013, vol. 8, no. 11, pp. e79617.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Mahmoodi, M., Mohammadi, S. and Enayati, F., SSU J., 2016, vol. 24, no. 3, pp. 201–210.

    Google Scholar 

  28. Ahmadimoghaddam, D., Sadeghian, R., Ranjbar, A., Izadidastenaei, Z., and Mohammadi, S., Res. Pharm. Sci., 2020, vol. 15, no. 5, p. 463.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Golshani, Y. and Mohammadi, S., Armaghane Danesh, 2015, vol. 19, no. 12, pp. 1058–1068.

    Google Scholar 

  30. Long, C.C., Sadler, K.E., and Kolber, B.J., Physiol. Behav., 2016, vol. 165, no., pp. 278–285.

  31. Vendruscolo, L.F., Pamplona, F.A., and Takahashi, R.N., Brain Res., 2004, vol. 1030, no. 2, pp. 277–283.

    Article  CAS  PubMed  Google Scholar 

  32. Giles, H. and Leff, P., Prostaglandins, 1988, vol. 35, no. 2, pp. 277–300.

    Article  CAS  PubMed  Google Scholar 

  33. Minami, T., Okuda-Ashitaka, E., Mori, H., Ito, S., and Hayaishi, O., J. Pharmacol. Exp. Ther., 1996, vol. 278, no. 3, pp. 1146–1152.

    CAS  PubMed  Google Scholar 

  34. Kanda, H., Kobayashi, K., Yamanaka, H., and Noguchi, K., Glia, 2013, vol. 61, no. 6, pp. 943–956.

    Article  PubMed  Google Scholar 

  35. McEwen, B.S. and Kalia, M., Metabolism, 2010, vol. 59, pp. S9–S15.

    Article  CAS  PubMed  Google Scholar 

  36. Atmaramani, R.R., Black, B.J., de la Peña, J.B., Campbell, Z.T., and Pancrazio, J.J., Bioengineering, 2020, vol. 7, no. 2, p. 44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ji, R.-R., Baba, H., Brenner, G.J., and Woolf, C.J., Nat. Neurosci., 1999, vol. 2, no. 12, pp. 1114–1119.

    Article  CAS  PubMed  Google Scholar 

  38. Guo, A.-L., Petraglia, F., Criscuolo, M., Ficarra, G., Nappi, R.E., Palumbo, M., Valentini, A., and Genazzani, A.R., Eur. J. Endocrinol., 1994, vol. 131, no. 5, pp. 535–539.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The study was funded by Vice-chancellor for Research and Technology at Hamadan University of Medical Sciences (No. 140004083033) and extracted from MSc Thesis.

Author information

Authors and Affiliations

Authors

Contributions

Data analysis and interpretation: Mona Paknia; Data acquisition, Mohammad Zarei; Study conception, design, and critical revision. Mona Paknia, Safoura Raoufi, Parisa Habibi, Fatemeh Ramezani-Aliakbari, and Seyed Asaad Karimi; Drafting of the manuscript.

Corresponding author

Correspondence to Mohammad Zarei.

Ethics declarations

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

The experimentation protocols were following the instructions agreed by the NIH Publication; No. 85-23, 1985. The Ethics Committee of the University of Medical Sciences- Hamadan approved the research (Ethical No. 1397.618).

CONFLICT OF INTEREST

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mona Paknia, Zarei, M., Raoufi, S. et al. Effects of Intrathecal Administration of Prostaglandin-D2 on Stress-Induced Analgesia: Involvements of DP2 Receptors. Neurochem. J. 18, 313–320 (2024). https://doi.org/10.1134/S1819712424020119

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1819712424020119

Keywords:

Navigation