Log in

Influence of Nanosized Cerium Oxide on the Thermal Characteristics of Aromatic Polyimide Films

  • Published:
Polymer Science, Series C Aims and scope Submit manuscript

Abstract

The influence of nanosized cerium oxide as an active filler on the mechanical properties and thermal stability indices and heat resistance of films of thermally stable aromatic polyimides of various chemical structures is studied. It is shown that, depending on the polyimide structure the introduction of cerium oxide nanoparticles into the film can lead to a noticeable increase or a significant decrease in the thermal stability of the material during thermo-oxidative degradation. It is found that the thermal stability of the films increases significantly when polyimides containing sulfonic groups in elementary units serve as matrix polymers. The introduction of cerium oxide nanoparticles into such polyimides leads to an increase in the thermal stability of the films in air by 20–40°C. Moreover, in an inert medium the thermal stability indices for the films of matrix polymers and nanocomposites differ slightly. For all the studied polyimides, the introduction of cerium oxide does not cause a noticeable change in the glass transition temperature but in some cases leads to limitation of the compliance of the films in the temperature range above the glass transition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. I. Zaman, B. Manshoor, A. Khalid, and S. Araby, J. Polym. Res. 21, article 429 (2014).

    Article  Google Scholar 

  2. J. Njuguna, K. Pielichowski, and S. Desai, Polym. Adv. Technol. 19, 947 (2008).

    Article  CAS  Google Scholar 

  3. M. Quaresimin, K. Schulte, M. Zappalorto, and S. Chandrasekaran, Compos. Sci. Technol. 123, 187 (2016).

    Article  CAS  Google Scholar 

  4. A. M. Valenkov, I. V. Gofman, K. S. Nosov, V. M. Shapovalov, and V. E. Yudin, Russ. J. Appl. Chem. 84, 735 (2011).

    Article  CAS  Google Scholar 

  5. L. Peponi, D. Puglia, L. Torre, L. Valentini, and J. M. Kenny, Materials Sci. Eng., R 85, 1 (2014).

  6. S. Fu, Z. Sun, P. Huang, Y. Li, and N. Hu, Nano Mater. Sci. 1, 2 (2019).

    Google Scholar 

  7. N. Ramdani, Polymer Nanocomposites for Advanced Engineering and Military Applications (IGI Global, Hershey, USA, 2019).

    Book  Google Scholar 

  8. V. A. Gerasin, E. M. Antipov, V. V. Karbushev, V. G. Kulichikhin, G. P. Karpacheva, R. V. Talroze, and Y. V. Kudryavtsev, Russ. Chem. Rev. 82, 303 (2013).

    Article  Google Scholar 

  9. W. Viratyaporn and R. L. Lehman, J. Therm. Anal. Calorim. 103, 267 (2011).

    Article  CAS  Google Scholar 

  10. A. Choudhury, A. K. Bhowmick, C. Ong, and M. Soddemann, J. Nanosci. Nanotechnol. 10, 5056 (2010).

    Article  CAS  PubMed  Google Scholar 

  11. Y. Wang, C. Wang, Z. Zhang, and K. **ao, Nanomaterials 7, 320 (2017).

    Article  PubMed Central  Google Scholar 

  12. D. Bikiaris, Thermochim. Acta 523, 25 (2011).

    Article  CAS  Google Scholar 

  13. I. V. Gofman, E. M. Ivan’kova, I. V. Abalov, V. E. Smirnova, E. N. Popova, O. Orell, J. Vuorinen, and V. E. Yudin, Polym. Sci., Ser. A 58, 87 (2016).

    Article  CAS  Google Scholar 

  14. Z. Lu, C. Mao, M. Meng, S. Liu, Y. Tian, L. Yu, B. Sun, and C. M. Li, J. Colloid Interface Sci. 435, 8 (2014).

    Article  CAS  PubMed  Google Scholar 

  15. K. Q. Liu, C. X. Kuang, M. Q. Zhong, Y. Q. Shi, and F. Chen, Opt. Mater. 35, 2710 (2013).

    Article  CAS  Google Scholar 

  16. D. R. Mullins, Surf. Sci. Rep. 70, 42 (2015).

    Article  CAS  Google Scholar 

  17. F. Tiefensee, C. Becker-Willinger, G. Heppe, P. Herbeck-Engel, and A. Jakob, Ultrasonics 50, 363 (2010).

    Article  CAS  Google Scholar 

  18. M. I. Bessonov, M. M. Koton, V. V. Kudryavtsev, and L. A. Laius, Polyimides—Thermally Stable Polymers (Plenum Publ. Corp., New York, 1987).

    Google Scholar 

  19. I. V. Gofman, I. V. Abalov, S. V. Gladchenko, and N. V. Afanas’eva, Polym. Adv. Technol. 23, 408 (2012).

    Article  CAS  Google Scholar 

  20. V. K. Ivanov, G. P. Kopitsa, A. E. Baranchikov, S. V. Grigor’ev, V. V. Runov, and V. M. Haramus, Russ. J. Inorg. Chem. 54, 1857 (1857).

    Article  Google Scholar 

  21. A. Nikolaeva, I. Gofman, A. Yakimansky, E. Ivan’kova, N. Gulii, M. Teplonogova, O. Ivanova, A. Baranchikov, and V. Ivanov, Mater. Today Commun. 22, article 100803 (2020).

  22. A. Trovarelli, Catal. Rev.: Sci. Eng. 38, 439 (1996).

    Article  CAS  Google Scholar 

  23. M. Carltonbird, S. Eaimsumang, S. Pongstabodee, S. Boonyuen, S. M. Smith, and A. Luengnaruemitchai, Chem. Eng. J. 344, 545 (2018).

    Article  CAS  Google Scholar 

  24. V. E. Smirnova, I. V. Gofman, E. M. Ivan’kova, A. L. Didenko, A. V. Krestinin, G. I. Zvereva, V. M. Svetlichnyi, and V. E. Yudin, Polym. Sci., Ser. A 55, 268 (2013).

    Article  CAS  Google Scholar 

  25. A. Migani, G. N. Vayssilov, S. T. Bromley, F. Illas, K. M. Neyman, J. Mater. Chem. 20, 10535 (2010).

    Article  CAS  Google Scholar 

  26. J. M. Fenton, M. P. Rodgers, D. K. Slattery, X. Huang, V. O. Mittal, L. J. Bonville, and H. R. Kunz, ECS Trans. 25, 233 (2009).

    Article  CAS  Google Scholar 

  27. P. Trogadas, J. Parrondo, and V. Ramani, Electrochem. Solid-State Lett. 11, B113 (2008).

    Article  CAS  Google Scholar 

  28. S. Deshpande, S. Patil, S. V. N. T. Kuchibhatla, and S. Seal, Appl. Phys. Lett. 87, article 133113 (2005).

    Article  Google Scholar 

  29. X. Wang, Q. Jiang, W. Xu, W. Cai, Y. Inoue, and Y. Zhu, Carbon 53, 145 (2013).

    Article  CAS  Google Scholar 

  30. Nanomaterials. Handbook, Ed. by Y. Gogotsi (CRC Press, Boca Raton; London; New York, 2017).

    Google Scholar 

  31. V. E. Smirnova, I. V. Gofman, T. A. Maritcheva, V. E. Yudin, K. Eto, T. Takeichi, Y. Kaburagi, and Y. Hishiyama, Carbon 45, 839 (2007).

    Article  CAS  Google Scholar 

  32. M. Inagaki, Y. Hishiyama, and Y. Kaburagi, Carbon 32, 637 (1994).

    Article  CAS  Google Scholar 

  33. V. M. Svetlichnyi and V. V. Kudryavtsev, Polymer Science 45 (5–6), 140.

  34. I. V. Gofman, K. Balik, M. Cerny, M. Zaloudkova, M. Ja. Goikhman, and V. E. Yudin, Cogent Chem. 1, article 1076712 (2015).

  35. Z.-X. Zhou, L.-N. Wang, Z.-Y. Li, S.-G. He, and T.‑M. Ma, J. Phys. Chem. A 120, 3843 (2016).

    Article  CAS  PubMed  Google Scholar 

  36. U. Tumuluri, M. Li, B. Cook, B. G. Sumpter, S. Dai, and Z. Wu, J. Phys. Chem. C 119, 28895 (2015).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to L.A. Myagkova, A.L. Didenko, and D.A. Kuznetsov (Institute of Macromolecular Compounds, Russian Academy of Science) for the synthesis of PAAs used in the work.

Funding

The study was supported by the Russian Science Foundation (project no. 18-13-00305).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Gofman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gofman, I.V., Nikolaeva, A.L., Abalov, I.V. et al. Influence of Nanosized Cerium Oxide on the Thermal Characteristics of Aromatic Polyimide Films. Polym. Sci. Ser. C 62, 196–204 (2020). https://doi.org/10.1134/S181123822002006X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S181123822002006X

Navigation