Log in

Vacuum Plasmatrons with Hollow Cathode: Gas-Dynamic Plasma Processes in the Hollow Cathode

  • Published:
Journal of Engineering Thermophysics Aims and scope

Abstract

It is shown that it is necessary for vacuum plasmatron with hollow cathode to meet the technical requirements to the hollow cathode pipeline to provide not only the necessary kinetic energy of the gas involved in the formation of working parameters in the cavity cathode but also to ensure the stable operation conditions for vacuum plasmatron at large current without the occurrence of high-frequency oscillations in the plasmatron electrical circuit. The pipeline maximum length has been established, guaranteeing the speed of gas at its final section and equals to the speed of sound at the output; the results of mathematical modeling and experimental investigated parameters for develo** gas-dynamic processes in hollow cold and hot cathodes of vacuum plasmatrons are presented. The start-up modes ranges for warming up the cavity cathode and continuous discharge output with hollow cathode into working modes with flowing currents up to 10000 A are considered. The occurrence and development of the gradient pressure, density, velocity mass flow rate at heating the cathode and the gradient increase temperature effect of the cathode edge with forming current conductivity active zone in the cylindrical cathode are shown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

REFERENCES

  1. Cherednichenko, V.S. and Yudin, B.I., Thermophysic Processes in Vacuum Plasma Electric Furnaces for Heating Powdered Materials, Russ. Metall. (Met.), 2008, vol. 7, pp. 583–587.

    Article  ADS  Google Scholar 

  2. Cherednichenko, M.V., Yudin, B.I., Gramolin, A.V., and Kuzin, S.A., Experimental Researches of Thermal Field of Hollow Cathodes in Vacuum Plasmatorches, Thermophys. Aeromech., 2002, vol. 9, pp. 587–596.

    Google Scholar 

  3. Cherednichenko, A.V., Cherednichenko, V.S., Bikeev, R.A., and Serikov, V.A., Electrothermal Processing of Tantalum Capacitor Powders, IOP Conf. Ser.: Materials Science and Engineering, 2019, vol. 560, p. 012100.

  4. Becker, K.H., et al., Microplasmas: Scientific Challenges and Technological Opportunities, Eur. Phys. J. D, 2010, vol. 60, pp. 437–439.

    Article  ADS  Google Scholar 

  5. Bogaerts, A., Neyts, E., Gijbels, R., and van der Mullen, J., Gas Discharge Plasmas and Their Applications, Spectrochim. Acta B, 2002, vol. 57, pp. 609–658.

    Article  ADS  Google Scholar 

  6. Yudin, B.I. and Cherednichenko, V.S., Starting and Operating Regimes of Vacuum Plasmatrons with Hollow Cathodes, Russ. Electr. Engin., 2007, vol. 78, pp. 495–499.

    Article  Google Scholar 

  7. Yudin, B.I. and Paklin, B.L., The Algorithm of Dynamics Problems Solution Monte Carlo Method (DSMC), The 9th Russian-Korean Int.: Proc., 2005, p. 363–367.

  8. Cherednichenko, M.V., Resources Saved Technologies Based on Vacuum Arc Plasma Generators, Korus-99: the Third Russian-Korean International Symposium of Science and Technology: Abstr., 1999, pp. 38–42.

  9. Anders, A., Ion Charge State Distributions of Vacuum Arc Plasmas: The Origin of Species, Phys. Rev. E, 1997, vol. 55, p. 969.

    Article  ADS  Google Scholar 

  10. Raizer, Y.P., Gas Discharge Physics, Berlin: Springer, 1991.

    Book  Google Scholar 

  11. Fauchais, P. and Vardelle, A., Thermal Plasmas IEEE Trans. Plasma Sci., 1997, vol. 25, pp. 1258–1280.

    Article  ADS  Google Scholar 

  12. Pejovic, M.M., Ristic, G.S., and Karamarkovic, J.P., Electrical Breakdown in Low Pressure Gases, J. Phys. D: Appl. Phys., 2002, vol. 35, pp. R91–103.

    Article  ADS  Google Scholar 

  13. Yudin, B.I., Resources Saved Technologies Based on Vacuum Arc Plasma Generators, Korus-2005. The 9th Russian-Korean Int. Symp. on Science and Technology, Proc., Novosibirsk, Russia, 2005, pp 38–42.

  14. An’shakov, A.S., Cherednichenko, A.V., Serikov, V.A., and Domarov, P.V., Operating Modes of Vacuum Plasmatrons with Hollow Cathodes, IOP Conf. Ser.: Mat. Sci. Engin., 2019, vol. 560, p. 012121.

  15. Bikeev, R.A., and Cherednichenko, V.S. Simulation of Electromagnetic Processes in Three-Phase Electric Arc Furnaces, Russ. Electr. Engin., 2015, vol. 86, pp. 464–470.

    Article  Google Scholar 

  16. Anders, A., The Evolution of Ion Charge States in Cathodic Vacuum Arc Plasmas: A Review, Plasma Sources Sci. Technol., 2012, vol. 21, p. 035014.

    Article  ADS  Google Scholar 

  17. Cherednichenko, V.S. and Cherednichenko, M.V., Vacuum Plasma Electric Furnaces with Hollow Cathodes, Textbook, Novosibirsk: NSTU Publ. House, 1999.

    Google Scholar 

  18. Hutchinson, I.H., Principles of Plasma Diagnostics, Cambridge: Cambridge University Press, 2005.

    Google Scholar 

  19. Murphy, A.B. and Arundell, C.J., Transport Coefficients of Argon, Nitrogen, Oxygen, Argon-Nitrogen, and Argon-Oxygen Plasmas, Plasma Chem. Plasma Process., 1994, vol. 14, pp. 451–490.

    Article  Google Scholar 

  20. Bird, G.A., Molecular Gas Dynamics, Oxford, 1986, p. 402.

  21. Davis, W.D. and Miller, H.C., Analysis of the Electrode Products Emitted by Dc Arcs in a Vacuum Ambient, J. Appl. Phys., 1969, vol. 40, pp. 2212–2221.

    Article  ADS  Google Scholar 

  22. Anders, A. and Oks, E., Charge-State-Resolved Ion Energy Distribution Functions of Cathodic Vacuum Arcs: A Study Involving the Plasma Potential and Biased Plasmas, J. Appl. Phys., 2007, vol. 101, p. 043304.

    Article  ADS  Google Scholar 

  23. Cherednichenko, V.S. and Yudin, B.I., Theromechanical Treatment of Tantalic powder in Arc Discharge Plasma, Korus-2005. The 9th Russian-Korean Int. Symp. on Science and Technology. Proc., Novosibirsk, Russia: 2005, p. 407–410.

  24. Cherednichenko, V.S. and Yudin, B.I., Plasma Furnaces for processing powder materials XVI Int. UIE Conf. on Electricity Applications in Modern World, 2008, pp. 131/132.

  25. Cherednichenko, A.V., Zuev, S.P., and Serikov, V.A., Features of the Operating Modes of a Hot Hollow Cathode in a Vacuum Arc Discharge, IOP Conf. Ser.: Mat. Sci. Engin., 2019, vol. 560, p. 012122.

  26. Anders, A., Oks, E.M., and Yushkov, G.Y., Cathodic Arcs: Fractal Voltage and Cohesive Energy Rule, Appl. Phys. Lett., 2005, vol. 86, p. 211503.

    Article  ADS  Google Scholar 

  27. Yudin, B.I., New Soot Processing Electrotechnology, Sixth Int. Conf. on Unconuentional Electromechanical and Electrical Systems, Alushta, Ukraine, September 24-29, 2004, p. 1111–1116.

  28. Anders, A., Anders, S., Jüttner, B., and Brown, I.G., Time Dependence of Vacuum Arc Parameters, IEEE Trans. Plasma Sci., 1993, vol. 21, pp. 305–311.

    Article  ADS  Google Scholar 

  29. Cherednichenko, M.V., Experimental Investigations of the Processes in Arc Discharge with Hollow Cathodes of Variable Form, Thermophys. Aeromech., 2002, vol. 9, no. 1, pp. 17–28.

    Google Scholar 

  30. Anders, A., Yotsombat, B., and Binder, R., Correlation between Cathode Properties, Burning Voltage, and Plasma Parameters of Vacuum Arcs, J. Appl. Phys., 2001, vol. 89, pp. 7764–7771.

    Article  ADS  Google Scholar 

  31. Yushkov, G.Y., Anders, A., Oks, E.M., and Brown, I.G., Ion Velocities in Vacuum Arc Plasmas, J. Appl. Phys., 2000, vol. 88, pp. 5618–5622.

    Article  ADS  Google Scholar 

  32. Cherednichenko, V.S., Pavlenko, L.K., and Galkin, S.G., Heat Criterion of Diffuse Interaction Mode of the Hollow Cathode Arc, Thermophys. Aeromech., 1994, vol. 1, no. 4, pp. 319–323.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to P. V. Domarov or V. A. Serikov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Domarov, P.V., Serikov, V.A., Morev, A.E. et al. Vacuum Plasmatrons with Hollow Cathode: Gas-Dynamic Plasma Processes in the Hollow Cathode. J. Engin. Thermophys. 32, 603–626 (2023). https://doi.org/10.1134/S1810232823030153

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1810232823030153

Navigation