Log in

Embedded Solitons of the Generalized Nonlinear Schrödinger Equation with High Dispersion

  • Published:
Regular and Chaotic Dynamics Aims and scope Submit manuscript

Abstract

The family of generalized Schrödinger equations is considered with the Kerr nonlinearity. The partial differential equations are not integrable by the inverse scattering transform and new solutions of this family are sought taking into account the traveling wave reduction. The compatibility of the overdetermined system of equations is analyzed and constraints for parameters of equations are obtained. A modification of the simplest equation method for finding embedded solitons is presented. A block diagram for finding a solution to the nonlinear ordinary differential equation is given. The theorem on the existence of bright solitons for differential equations of any order with Kerr nonlinearity of the family considered is proved. Exact solutions of embedded solitons described by fourth-, sixth-, eighth and tenth-order equations are found using the modified algorithm of the simplest equation method. New solutions for embedded solitons of generalized nonlinear Schrödinger equations with several extremes are obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Brazil)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Wang, G., Kara, A. H., Biswas, A., Guggilla, P., Alzahrani, A. Kh., and Belic, M. R., Highly Dispersive Optical Solitons in Polarization-Preserving Fibers with Kerr Law Nonlinearity by Lie Symmetry, Phys. Lett. A, 2022, vol. 421, Paper No. 127768, 10 pp.

    Article  MathSciNet  MATH  Google Scholar 

  2. Kudryashov, N. A., Implicit Solitary Waves for One of the Generalized Nonlinear Schrödinger Equations, Mathematics, 2021, vol. 9, no. 23, Art. 3024, 9 pp.

    Article  Google Scholar 

  3. Kudryashov, N. A., The Generalized Duffing Oscillator, Commun. Nonlinear Sci. Numer. Simul., 2021, vol. 93, Art. 105526.

    Article  MathSciNet  MATH  Google Scholar 

  4. Zayed, E. M. E., Gepreel, K. A., El-Horbaty, M., Biswas, A., Yildirim, Y., and Alshehri, H. M., Highly Dispersive Optical Solitons with Complex Ginzburg – Landau Equation Having Six Nonlinear Forms, Mathematics, 2021, vol. 9, no. 24, Art. 3270, 19 pp.

    Article  Google Scholar 

  5. Elsherbeny, A. M., El-Barkouky, R., Seadawy, A. R., Ahmed, H. M., El-Hassani, R. M. I., and Arnous, A. H., Highly Dispersive Optical Soliton Perturbation of Kudryashov’s Arbitrary Form Having Sextic-Power Law Refractive Index, Internat. J. Modern Phys. B, 2021, vol. 35, no. 24, Paper No. 2150247, 14 pp.

    Article  MathSciNet  MATH  Google Scholar 

  6. Rabie, W. B., Seadawy, A. R., and Ahmed, H. M., Highly Dispersive Optical Solitons to the Generalized Third-Order Nonlinear Schrödinger Dynamical Equation with Applications, Optik, 2021, vol. 241, Art. 167109.

    Article  Google Scholar 

  7. Biswas, A., Ekici, M., Dakova, A., Khan, S., Moshokoa, S. P., Alshehri, H. M., and Belic, M. R., Highly Dispersive Optical Soliton Perturbation with Kudryashov’s Sextic-Power Law Nonlinear Refractive Index by Semi-Inverse Variation, Results Phys., 2021, vol. 27, Art. 104539.

    Article  Google Scholar 

  8. González-Gaxiola, O., Biswas, A., Alzahrani, A. K., and Belic, M. R., Highly Dispersive Optical Solitons with a Polynomial Law of Refractive Index by Laplace – Adomian Decomposition, J. Comput. Electron., 2021, vol. 20, no. 3, pp. 1216–1223.

    Article  Google Scholar 

  9. Zayed, E. M. E., Al-Nowehy, A.-G., Alngar, M. E. M., Biswas, A., Asma, M., Ekici, M., Alzahrani, A. K., and Belic, M. R., Highly Dispersive Optical Solitons in Birefringent Fibers with Four Nonlinear Forms Using Kudryashov’s Approach, J. Opt., 2021, vol. 50, no. 1, pp. 120–131.

    Article  Google Scholar 

  10. González-Gaxiola, O., Biswas, A., Asma, M., and Alzahrani, A. K., Highly Dispersive Optical Solitons with Non-Local Law of Refractive Index by Laplace – Adomian Decomposition, Opt. Quant. Electron., 2021, vol. 53, no. 1, Art. 55.

    Article  Google Scholar 

  11. Kudryashov, N. A., Highly Dispersive Optical Solitons of Equation with Various Polynomial Nonlinearity Law, Chaos Solitons Fractals, 2020, vol. 140, 110202, 4 pp.

    Article  MathSciNet  MATH  Google Scholar 

  12. Kudryashov, N. A., Highly Dispersive Optical Solitons of an Equation with Arbitrary Refractive Index, Regul. Chaotic Dyn., 2020, vol. 25, no. 6, pp. 537–543.

    Article  MathSciNet  MATH  Google Scholar 

  13. Zayed, E. M. E., Alngar, M. E. M., El-Horbaty, M. M., Biswas, A., Ekici, M., Zhou, Q., Khan, S., Mallawi, F., and Belic, M. R., Highly Dispersive Optical Solitons in the Nonlinear Schrödinger’s Equation Having Polynomial Law of the Refractive Index Change, Indian J. Phys., 2021, vol. 95, no. 1, pp. 109–119.

    Article  Google Scholar 

  14. González-Gaxiola, O., Biswas, A., and Alshomrani, A. S., Highly Dispersive Optical Solitons Having Kerr Law of Refractive Index with Laplace – Adomian Decomposition, Rev. Mex. de Fis., 2020, vol. 66, no. 3, pp. 291–296.

    Article  MathSciNet  Google Scholar 

  15. Kudryashov, N. A., Highly Dispersive Solitary Wave Solutions of Perturbed Nonlinear Schrödinger Equations, Appl. Math. Comput., 2020, vol. 371, 124972, 11 pp.

    Article  MathSciNet  MATH  Google Scholar 

  16. Kudryashov, N. A., Highly Dispersive Optical Solitons of the Generalized Nonlinear Eighth-Order Schrödinger Equation, Optik, 2020, vol. 206, Art. 164335.

    Article  Google Scholar 

  17. Kohl, R. W., Biswas, A., Ekici, M., Yildirim, Y., Triki, H., Alshomrani, A. S., and Belic, M. R., Highly Dispersive Optical Soliton Perturbation with Quadratic-Cubic Refractive Index by Semi-Inverse Variational Principle, Optik, 2020, vol. 206, Art. 163621.

    Article  Google Scholar 

  18. Kohl, R. W., Biswas, A., Ekici, M., Zhou, Q., Khan, S., Alshomrani, A. S., and Belic, M. R., Highly Dispersive Optical Soliton Perturbation with Kerr Law Nonlinearity by Semi-Inverse Variational Principle, Optik, 2019, vol. 199, Art. 163226.

    Article  Google Scholar 

  19. Biswas, A., Sonmezoglu, A., Ekici, M., Alshomrani, A. S., and Belic, M. R., Highly Dispersive Singular Optical Solitons with Kerr Law Nonlinearity by Jacobi’s Elliptic DS Function Expansion, Optik, 2019, vol. 192, Art. 162954.

    Article  Google Scholar 

  20. Biswas, A., Sonmezoglu, A., Ekici, M., Alshomrani, A. S., and Belic, M. R., Highly Dispersive Optical Solitons in Absence of Self-Phase Modulation by Jacobi’s Elliptic Function Expansion, Optik, 2019, vol. 189, pp. 109–120.

    Article  Google Scholar 

  21. Yang, I., Malomed, B. A., and Kaup, D. I., Embedded Solitons in Second-Harmonic-Generating System, Phys. Rev. Lett., 1999, vol. 83, no. 10, pp. 1958–1961.

    Article  Google Scholar 

  22. Kivshar, Yu. S. and Agrawal, G. P., Optical Solitons: From Fibers to Photonic Crystals, New York: Acad. Press, 2003.

    Google Scholar 

  23. Kivshar, Yu. S. and Malomed, B. A., Dynamics of Solitons in Nearly Integrable Systems, Rev. Mod. Phys., 1989, vol. 61, no. 4, pp. 763–915.

    Article  Google Scholar 

  24. Kivshar, Yu. S. and Pelinovsky, D. E., Self-Focusing and Transversive Instabilities of Solitary Waves, Phys. Rep., 2000, vol. 331, no. 4, pp. 117–195.

    Article  MathSciNet  Google Scholar 

  25. Sukhorukov, A. A. and Kivshar, Yu. S., Eisenberg, H. S., and Silberberg, Y., Spatial Optical Solitons in Waveguide Arrays, IEEE J. Quantum Electron., 2003, vol. 39, no. 1, pp. 31–50.

    Article  Google Scholar 

  26. Sukhorukov, A. A., Kivshar, Yu. S., Bang, O., and Soukoulis, C. M., Parametric Localized Modes in Quadratic Nonlinear Photonic Structures, Phys. Rev. E, 2000, vol. 63, no. 1, 016615, 9 pp.

    Article  Google Scholar 

  27. Mihalache, D., Mazilu, D., Lederer, F., Kartashov, Ya. V., Crasovan, L.-C., Torner, L., and Malomed, B. A., Stable Vortex Tori in the Three-Dimensional Cubic-Quintic Ginzburg – Landau Equation, Phys. Rev. Lett., 2006, vol. 97, no. 7, 073904, 4 pp.

    Article  Google Scholar 

  28. Champneys, A. R., Malomed, B. A., Yang, J., and Kaup, D. J., Embedded Solitons: Solitary Waves in Resonance with the Linear Spectrum: Advances in Nonlinear Mathematics and Science, Phys. D, 2001, vol. 152/153, pp. 340–354.

    Article  MATH  Google Scholar 

  29. Sakaguchi, H. and Malomed, B. A., Matter-Wave Soliton Interferometer Based on a Nonlinear Splitter, New J. Phys., 2016, vol. 18, no. 2, 025020, 13 pp.

    Article  MATH  Google Scholar 

  30. Buryak, A. V. and Akhmediev, N. N., Stability Criterion for Stationary Bound States of Solitons with Radiationless Oscillating Tails, Phys. Rev. E, 1995, vol. 51, no. 4, pp. 3572–3578.

    Article  Google Scholar 

  31. Yang, J., Malomed, B. A., Kaup, D. J., and Champneys, A. R., Embedded Solitons: A New Type of Solitary Wave, Math. Comput. Simulation, 2001, vol. 56, no. 6, pp. 585–600.

    Article  MathSciNet  MATH  Google Scholar 

  32. Kudryashov, N. A., Safonova, D. V., and Biswas, A., Painlevé Analysis and a Solution to the Traveling Wave Reduction of the Radhakrishnan – Kundu – Lakshmanan Equation, Regul. Chaotic Dyn., 2019, vol. 24, no. 6, pp. 607–614.

    Article  MathSciNet  MATH  Google Scholar 

  33. Kudryashov, N. A., Method for Finding Highly Dispersive Optical Solitons of Nonlinear Differential Equation, Optik, 2020, vol. 206, Art. 163550.

    Article  Google Scholar 

  34. Kudryashov, N. A., Solitary Wave Solutions of Hierarchy with Non-Local Nonlinearity, Appl. Math. Lett., 2020, vol. 103, 106155, 5 pp.

    Article  MathSciNet  MATH  Google Scholar 

  35. Kudryashov, N. A., Method for Finding Optical Solitons of Generalized Nonlinear Schrödinger Equations, Optik, 2022, vol. 261, Art. 169163.

    Article  Google Scholar 

  36. Kudryashov, N. A., First Integrals and General Solution of the Complex Ginzburg – Landau Equation, Appl. Math. Comput., 2020, vol. 386, 125407, 9 pp.

    Article  MathSciNet  MATH  Google Scholar 

  37. Arnous, A. H., Biswas, A., Yildirim, Y., Zhou, Q., Liu, W., Alshomrani, A. S., and Alshehri, H. M., Cubic-Quartic Optical Soliton Perturbation with Complex Ginzburg – Landau Equation by the Enhanced Kudryashov’s Method, Chaos Solitons Fractals, 2022, vol. 155, Paper No. 111748, 15 pp.

    Article  MathSciNet  MATH  Google Scholar 

  38. Sain, S., Ghose-Choudhury, A., and Garai, S., Solitary Wave Solutions for the KdV-Type Equations in Plasma: A New Approach with the Kudryashov Function, Eur. Phys. J. Plus, 2021, vol. 136, no. 2, Art. 226.

    Article  Google Scholar 

  39. Ozisik, M., Secer, A., Bayram, M., and Aydin, H., An Encyclopedia of Kudryashov’s Integrability Approaches Applicable to Optoelectronic Devices, Optik, 2022, vol. 265, Art. 169499.

    Article  Google Scholar 

  40. Ekici, M., Stationary Optical Solitons with Kudryashov’s Quintuple Power Law Nonlinearity by Extended Jacobi’s Elliptic Function Expansion, J. Nonlinear Opt. Phys. Mater., 2022, vol. 32, no. 1, 2350008.

    Article  MathSciNet  Google Scholar 

Download references

Funding

This research was supported by the Russian Science Foundation under grant No. 22-11-00141 “Development of Analytical and Numerical Methods for Modeling Waves in Dispersive Wave Guides”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikolay A. Kudryashov.

Ethics declarations

The author declares that he has no conflicts of interest.

Additional information

MSC2010

34M55

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kudryashov, N.A. Embedded Solitons of the Generalized Nonlinear Schrödinger Equation with High Dispersion. Regul. Chaot. Dyn. 27, 680–696 (2022). https://doi.org/10.1134/S1560354722060065

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1560354722060065

Keywords

Navigation