Log in

UV Photoinitiated Temperature-Sensitive Modification of Polypropylene Grafted with Poly(N-isopropylacrylamide)

  • MODIFICATION OF POLYMERS
  • Published:
Polymer Science, Series B Aims and scope Submit manuscript

Abstract

Poly(N-isopropylacrylamide) was grafted onto the surface of polypropylene by a two-step surface photo-grafting method using benzophenone as a photosensitizer to impart surface temperature sensitivity to polypropylene. The structure of graft-copolymer was characterized by infrared spectroscopy and scanning electron microscopy. Its temperature sensitivity was investigated by modulated differential scanning calorimetry and surface water contact angle determination. The effects of initiator concentration, photoreduction time, monomer concentration and light exposure time on grafting rate are discussed. The results showed that graft-copolymer is temperature-sensitive hydrophilic/hydrophobic, and its low critical solubility temperature is around 33°C. The grafting rate could be increased by increasing the initiator concentration, monomer concentration, extending the photoreduction time and irradiation time; and the grafting rate could be controlled by adjusting these four factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. S. W. Hu and X. Y. Qiu, Materials 6, 738 (2013).

    Article  Google Scholar 

  2. I. Roy and M. N. Gupta, Chem. Biol. 10, 1161 (2004).

    Article  Google Scholar 

  3. X. Li and X. L. Su, J. Mater. Chem. B 6, 4714 (2018).

    Article  CAS  Google Scholar 

  4. S. K. Li and A. D’Emanuele, Int. J. Pharm. 267, 27 (2003).

    Article  CAS  Google Scholar 

  5. D. Zheng, B. Bai, Y. He, N. Hu, and H. L. Wang, Int. J. Biol. Macromol. 160, 518 (2020).

    Article  CAS  Google Scholar 

  6. Y. Liu and Y. Cui, Polym. Int. 60, 1117 (2011).

    Article  CAS  Google Scholar 

  7. T. Wang, Y. N. Song, J. W. Hu, J. X. Li, and S. Shi, Micro Nano Lett. 14,404 (2019).

    Article  CAS  Google Scholar 

  8. Y. Zhang, S. L. Chen, M. L. Pang, and W. Q. Zhang, Polym. Chem. 7, 6880 (2016).

    Article  CAS  Google Scholar 

  9. F. Croisfelt, B. Martins, R. Rescolino, D. F. Coelho, B. Zanchetta, and P. G. Mazzola, Planta Med. 81, 1719 (2015).

    Article  CAS  Google Scholar 

  10. S. Kim, K. Lee, and C. Cha, J. Biomater. Sci., Polym. Ed. 27, 1698 (2016).

    Article  CAS  Google Scholar 

  11. S. Schmidt, M. Zeiser, T. Hellweg, C. Duschl, A. Fery, and H. Moehwald, Adv. Funct. Mater. 20, 3235 (2010).

    Article  CAS  Google Scholar 

  12. R. Shimura, Y. Suematsu, H. Horiuchi, S. Takeoka, A. Oshima, and M. Washio, Radiat. Phys. Chem. 171, 108741 (2020).

  13. A. Tiwari, Y. Sharma, S. Hattori, D. Terada, A. K. Sharma, A. P. F. Turner, and H. Kobayashi, Biopolymers 99, 334(2013).

    Article  CAS  Google Scholar 

  14. S. Ren, X. Jiang, Z. Li, Y. Wen, D. Chen, and X. Li, J. Int. Med. Res. 40, 2167 (2012).

    CAS  Google Scholar 

  15. C. Feng, Y. Liu, and C. L. Ren, Soft Matter 14, 6521 (2018).

    Article  CAS  Google Scholar 

  16. J. Kim, S. Nayak, and L. A. Lyon, J. Am. Chem. Soc. 127, 9588 (2005).

    Article  CAS  Google Scholar 

  17. A. L. Golden, C. F. Battrell, S. Pennell, A. S. Hoffman, J. J. Lai, and P. S. Stayton, Bioconjugate Chem. 21, 1820 (2010).

    Article  CAS  Google Scholar 

  18. P. Q. Li, S. Tan, Y. Wu, C. H. Wang, and M. Watanabe, ACS Macro Lett. 9, 825 (2020).

    Article  CAS  Google Scholar 

  19. Y. Jiang, P. Tan, L. Cheng, S. F. Shan, X. Q. Liu, and L. B. Sun, Phys. Chem. Chem. Phys. 18, 9883 (2016).

    Article  CAS  Google Scholar 

  20. X. Chen, Y. He, C. C. Shi, W. G. Fu, S. Y. Bi, and Z. Y. Wang, J. Membr. Sci. 469, 447 (2014).

    Article  CAS  Google Scholar 

  21. R. W. Ou, J. Wei, L. Jiang, G. P. Simon, and H. T. Wang, Environm. Sci. Technol. 50, 906 (2015).

    Article  Google Scholar 

  22. E. J. Lee and Y. H. Kim, Polymer (Korea) 37, 539 (2013).

    Article  CAS  Google Scholar 

  23. Y. Gao, Y. F. Zhou, and D. Y. Yan, Polymer 50, 2572 (2009).

    Article  CAS  Google Scholar 

  24. M. Walo, G. Przybytniak, S. Meczynska-Wielgosz, and M.Kruszewski, Eur. Polym. J. 68, 398 (2015).

    Article  CAS  Google Scholar 

  25. S. Cakmak, A. S. Cakmak, and M. Guemuesderelioglu, Mater. Sci. Eng., C 33, 3033 (2013).

    Article  CAS  Google Scholar 

  26. T. M. Don, S. C. Chou, L. P. Cheng, and H. Y. Tai, J. Appl. Polym. Sci. 120, 1 (2011).

    Article  CAS  Google Scholar 

  27. S. G. Kelmanovich, R. Parke-Houben, and C. W. Frank, Soft Matter 8, 8137 (2012).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was financially supported by the National Natural Science Foundation of China (Grant no. 51463005), the Cooperation Project of Guizhou Province (Grant no. LH[2016]7441).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Lei.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, X.C., Wu, C.L., **ong, J. et al. UV Photoinitiated Temperature-Sensitive Modification of Polypropylene Grafted with Poly(N-isopropylacrylamide). Polym. Sci. Ser. B 64, 644–650 (2022). https://doi.org/10.1134/S1560090422700415

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1560090422700415

Navigation