Log in

Formation of porous and Hollow polymer particles by urea treatment

  • Synthesis
  • Published:
Polymer Science Series B Aims and scope Submit manuscript

Abstract

In this article, core/shell microspheres are synthesized by multistep seeded polymerization, using methyl methacrylate (MMA), acrylic acid (AA), divinylbenzene (DVB) and styrene (St) as raw materials. Hollow microspheres containing novel surface and inner morphology are fabricated by the process of urea post-treatment of core/shell microspheres. The morphology of microspheres is investigated by transmission electron microscopy (TEM) and scanning electron microscopy (SEM). On the basis of the experimental results, it is reasonable to conclude that the formation of hollow spheres is due to the reaction of ammonia which is produced by decomposition of urea, meanwhile the emission of gas makes the mesoporous shell. The results also suggested that the urea treatment time, temperature and the amount of urea are the key factors to obtain the hollow structured particles. When the urea treatment temperature was below 90°C, the microsphere morphology was nearly unchanged. The addition of ethanol could promote the formation of hollow structure. Moreover, the ratio of hollow spheres increased with increasing urea content. The optimal process to obtain hollow structured microsphere during the urea treatment is treated at 95°C for 5 h with urea mass concentration of 0.054 g/mL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. J. McDonald and M. J. Devon, Adv. Colloid Inter-face Sci. 99, 181 (2002).

    Article  CAS  Google Scholar 

  2. J. W. Vanderhoff, J. M. Park, and M. S. Elaasser, J. Am. Chem. Soc. 64, 345 (1991).

    CAS  Google Scholar 

  3. X. L. Xu and A. Sanford, J. Am. Chem. Soc. 126, 7940 (2004).

    Article  CAS  Google Scholar 

  4. A. Kowalski and M. Vogel, US Patent No. 4469825 (1984).

  5. Q. B. Yu, Y. L. Tao, Z. Q. Huang, Y. L. Lin, L. L. Zhuang, Y. H. Ge, M. H. Shen, and A. J. **e, Ind. Eng. Chem. Res. 51, 8117 (2012).

    Article  CAS  Google Scholar 

  6. X. L. Xu and A. Sanford, J. Am. Chem. Soc. 126, 7940 (2004).

    Article  CAS  Google Scholar 

  7. J. Z. Du and K. Rachel, Chem. Soc. Rev. 40, 2402 (2011).

    Article  CAS  Google Scholar 

  8. W. Deng, M. Y. Wang, G. Chen, and C. Y. Kan, Eur. Polym. J. 46, 1210 (2010).

    Article  CAS  Google Scholar 

  9. M. Okubo and T. Yamashita, Colloid Polym. Sci. 276, 103 (1998).

    Article  CAS  Google Scholar 

  10. M. Okubo, A. Ito, M. Okada, and T. Suzuki, Colloid Polym. Sci. 280, 574 (2002).

    Article  CAS  Google Scholar 

  11. M. Okubo, A. Ito, and A. Hashiba, Colloid Polym. Sci. 274, 428 (1996).

    Article  CAS  Google Scholar 

  12. M. Okubo, K. Ichikawa, and M. Fujimura, Colloid Polym. Sci. 269, 1257 (1991).

    Article  CAS  Google Scholar 

  13. M. Okubo, Y. Konishi, and H. Minami, Colloid Polym. Sci. 276, 638 (1998).

    Article  CAS  Google Scholar 

  14. X. D. He, X. W. Ge, H. R. Liu, M. Z. Wang, and Z. C. Zhang, J. Polym. Sci., Part A: Polym. Chem. 45, 933 (2007).

    Article  CAS  Google Scholar 

  15. W. Deng, W. J. Ji, Y. Jiang, and C. Kan, J. Appl. Polym. Sci. 127, 651 (2013).

    Article  CAS  Google Scholar 

  16. W. Deng, R. L. Li, M. J. Zhang, L. X. Gong, and C. Y. Kan, J. Colloid Interface Sci. 349, 122 (2010).

    Article  CAS  Google Scholar 

  17. F. Caruso, Adv. Mater. 13 (1), 11 (2001).

    Article  CAS  Google Scholar 

  18. J. Han, G. P. Song, and R. Guo, Chem. Mater. 19, 973 (2007).

    Article  CAS  Google Scholar 

  19. Y. Keiichi, R. Kristina, K. Anatol, M. Klaus, S. Koji, and Y. Lei, Anal. Chim. Acta 584, 112 (2007).

    Article  Google Scholar 

  20. C. J. McDonald, K. J. Bouck, A. B. Chaput, and C. Stevens, Macromolecules 33, 1593 (2000).

    Article  CAS  Google Scholar 

  21. K. S. W. Sing, D. H. Everett, R. A. W. Haul, L. Moscou, R. A. Pierotti, J. Rouquerol, and T. Siemieniewska, Pure Appl. Chem. 57, 603 (1985).

    Article  CAS  Google Scholar 

  22. A. Hameed, T. Montini, V. Gombac, and P. Fornasiero, J. Am. Chem. Soc. 130 (30), 9658 (2008).

    Article  CAS  Google Scholar 

  23. V. N. Pavlyuchenko, O. V. Sorochinskaya, S. S. Ivanchev, V. V. Klubin, G. S. Kreichman, V. P. Budtov, M. Skrif-vars, E. Halme, and J. Koskinen, J. Polym. Sci., Part A: Polym. Chem. 39, 1435 (2001).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhongbing Wang.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Hong, Q., Shi, Y. et al. Formation of porous and Hollow polymer particles by urea treatment. Polym. Sci. Ser. B 57, 600–607 (2015). https://doi.org/10.1134/S1560090415070064

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1560090415070064

Keywords

Navigation