Log in

State-of-the-Art Nuclear Physics Research in Medicine

  • PHYSICS AND TECHNIQUE OF ACCELERATORS
  • Published:
Physics of Particles and Nuclei Letters Aims and scope Submit manuscript

Abstract

This work is a review of scientific research on the development of nuclear physics methods and technologies for medicine.1 The most relevant results, many of which are already used in the practical treatment of patients, are considered. New methods for improving the quality (quality assurance) of radiation therapy during irradiation with bremsstrahlung photon and proton beams are proposed. Methods for improving the accuracy of magnetic resonance imaging (MRI) tomography of pathological foci in the planning of radiation therapy are described. In nuclear medicine, methods for producing radionuclides on electron accelerators for immune positron emission tomography (PET) diagnostics and targeted radiotherapy are proposed. New results in biomedical applications of radiation technologies (for food processing and sterilization of bioimplants) are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.

Similar content being viewed by others

Notes

  1. It has been carried out over the past 10 years by staff members and graduate students of the Department of Accelerator Physics and Radiation Medicine, Faculty of Physics, Moscow State University, together with staff members of medical oncological and scientific centers.

  2. The work was carried out in collaboration with Burnazyan Federal Medical Biophysical Center at the Federal Medical-Biological Agency of the Russian Federation, the Pletnev City Clinical Hospital, and the Blokhin National Medical Research Center of Oncology of the Ministry of Health of the Russian Federation.

  3. Rogachev National Medical Research Center of Paediatric Hematology, Oncology, and Immunology.

  4. International Society of Paediatric Oncology.

  5. Rescanning is the repeated scanning of an irradiated volume.

  6. The work was carried out in collaboration with the All-Russian Scientific Research Institute of Medicinal and Aromatic Plants (Moscow, Russia) and the Ammosov Northeastern Federal University (Yakutsk, Russia).

REFERENCES

  1. R. M. Howell, S. F. Kry, E. Burgett, N. E. Hertel, et al. “Secondary neutron spectra from modern Varian, Siemens, and Elekta linacs with multileaf collimators,” Med. Phys. 36,4027–4038 (2009).

    Article  Google Scholar 

  2. S. A. Martínez-Ovalle, R. Barquero, J. M. Gómez-Ros, and A. M. Lallena, “Neutron dose equivalent and neutron spectra in tissue for clinical linacs operating at 15, 18 and 20 MV,” Radiat. Prot. Dosim. 147, 498–511 (2011).

    Article  Google Scholar 

  3. F. Sanchez-Doblado, C. Domingo, F. Gomez, et al., “Estimation of neutron-equivalent dose in organs of patients undergoing radiotherapy by the use of a novel online digital detector,” Phys. Med. Biol. 57, 6167–6191 (2012).

    Article  Google Scholar 

  4. E. N. Lykova, M. V. Zheltonozhskaya, F. Yu. Smirnov, et al. “Investigation of the bremsstrahlung photon and neutron flux during the operation of a medical electron accelerator,” Med. Radiol. Rad. Bezopasnost’ 64, 78–84 (2019).

    Article  Google Scholar 

  5. M. V. Zheltonozhskaya, E. N. Lykova, A. P. Chernyaev, and V. N. Yatsenko, “Investigation of the flow of secondary particles of a medical electron accelerator,” Izv. Ross. Akad. Nauk. Ser. Fiz. 83, 1003–1008 (2019).

    Google Scholar 

  6. R. M. Howell, S. B. Scarboro, S. F. Kry, and D. Z. Yaldo, “Accuracy of out-of-field dose calculations by a commercial treatment planning system,” Phys. Med. Biol. 55, 6999–7008 (2010).

    Article  Google Scholar 

  7. J. Y. Huang, D. S. Followill, X. A. Wang, and S. F. Kry, “Accuracy and sources of error of out-of-field dose calculations by a commercial treatment planning system for intensity-modulated radiation therapy treatments,” J. Appl. Clin. Med. Phys. 14, 186—197 (2013).

    Article  Google Scholar 

  8. E. N. Lykova, “Investigation of flows of secondary particles during the operation of a medical accelerator with an energy of 18–20 MeV,” Thesis (Mosk. Gos. Univ., Moscow, 2019).

  9. E. N. Lykova, E. P. Morozova, A. F. Petrova, et al., “Measuring doses of radiation leaked from a multileaf collimator on a Varian Halcyon accelerator,” Bull. Russ. Acad. Sci. 86, 460—464 (2022).

    Article  Google Scholar 

  10. A. A. Loginova, D. A. Tovmasian, A. O. Lisovskaya, et al., “Optimized conformal total body irradiation methods with helical tomotherapy and elekta vmat. implementation, imaging, planning and dose delivery for pediatric patients,” Front. Oncol. 12, 785917 (2022).

    Article  Google Scholar 

  11. A. A. Loginova, D. A. Kobyzeva, A. A. Nechesnyuk, et al., “Comparison of treatment plans for total body irradiation (TBI) using volume-modulated rotational radiation therapy and helical tomotherapy,” Issled. Praktika Med. 5, 86 (2018).

    Google Scholar 

  12. A. W. Hoeben Bianca, M. Pazos, E. Seravalli et al., “ESTRO ACROP and SIOPE recommendations for myeloablative total body irradiation in children,” Radiother. Oncol. 173, 119–133 (2022).

    Article  Google Scholar 

  13. D. A. Tovmasyan, A. A. Loginova, A. P. Chernyaev, and A. V. Nechesnyuk, “Non-standard use of tomotherapy exit imaging detectors for quality assurance procedures,” Moscow Univ. Phys. Bull. 76, 470–476 (2021).

    Article  ADS  Google Scholar 

  14. S-I. Su Jung An, Cheol-Ha Beak, Kisung Lee, and Yong Hyun Chung, “A simulation study of a C-shaped in-beam PET system for dose verification in carbon ion therapy,” Nucl. Instr. Meth. Phys. Res., Sect. A 698, 37—43 (2013).

    Google Scholar 

  15. F. Ponisch, K. Parodi, B. G. Hasch, and W. Enghardt, “The modelling of positron emitter production and pet imaging during carbon ion therapy,” Phys. Med. Biol. 49, 5217–5232 (2004).

    Article  Google Scholar 

  16. A. G. Sinel’nikov, A. P. Chernyaev, A. A. Shcherbakov, et al., Bull. Russ. Acad. Sci.: Phys. 86, 927–930 (2022).

    Article  Google Scholar 

  17. M. A. Zubkov, A. E. Andreichenko, and E. I. Kretov, “Ultrahigh field magnetic resonance imaging: new frontiers and possibilities in human imaging,” Phys. Usp. 62, 1214–1232 (2019).

    Article  ADS  Google Scholar 

  18. E. P. Pappas, Mukhtar Alshanqity, and A. Moutsatsos, “MRI-related geometric distortions in stereotactic radiotherapy treatment planning: evaluation and dosimetric impact,” Technol. Cancer Res. Treat. 16, 1120—1129 (2017).

    Article  Google Scholar 

  19. X. Liu, Z. Li, Y. Rong, M. Cao, and H. Li, “A comparison of the distortion in the same field MRI and MR-linac system with a 3D printed phantom,” Front. Oncol. 11, 579451 (2021).

    Article  Google Scholar 

  20. I. V. Myaekivi, Evaluation of the influence of distortion in the image of magnetic resonance imaging on the planning of radiotherapy,” MS Thesis (Moscow, 2022).

  21. K. A. Urazova, G. E. Gorlachev, A. P. Chernyaev, and A. V. Golanov, “Diffusion magnetic resonance imaging data: development of methods and tools for diagnosis and treatment of brain diseases,” Bull. Siberian Med. 20, 191–201 (2021).

    Article  Google Scholar 

  22. N. A. Antipina, K. A. Urazova, A. S. Kuznetsova, and A. V. Golanov, “Evaluation and comparison of dosimetric parameters for cyberknife and novalis stereotactic radiotherapy of brain tumours,” J. Radiosurgery SBRT 5, P015 (2017).

  23. K. M. Hasan, I. S. Walimuni, H. Abid, and K. R. Hahn, “A review of diffusion tensor magnetic resonance imaging computational methods and software tools,” Comp. Biol. Med. No. 41 (12), 1062–1072 (2011). https://doi.org/10.1016/j.compbiomed.2010.10.008

    Article  Google Scholar 

  24. K. M. Hasan, I. S. Walimuni, H. Abid, and K. R. Hahn, “A review of diffusion tensor magnetic resonance imaging computational methods and software tools,” Comp. Biol. Med. No. 41 (12), 1062–1072 (2011). https://doi.org/10.1016/j.compbiomed.2010.10.008

    Article  Google Scholar 

  25. R. O. Duda and P. E. Hart, Pattern Classification and Scene Analysis (Wiley, 1973).

    MATH  Google Scholar 

  26. K. A. Urazova, G. E. Gorlachev, and A. P. Chernyaev, “Brain tractography based on diffusion data of magnetic resonance imaging,” Med. Fiz. No. 3, 114—129 (2019).

    Google Scholar 

  27. J. Bertholet et al., “Real-time intrafraction motion monitoring in external beam radiotherapy,” Phys. Med. Biol. 64, 15TR01 (2019). https://doi.org/10.1088/1361-6560/ab2ba8

    Article  Google Scholar 

  28. T. Kubiak, “Particle therapy of moving targets—the strategies for tumour motion monitoring and moving targets irradiation, Braz. J. Radiol. 89, 20150275 (2016). https://doi.org/10.1259/bjr.20150275

    Article  Google Scholar 

  29. V. Balakin, A. Bazhan, V. Alexandrov, A. Pryanichnikov, A. Shemyakov, and A. Shestopalov, “Status of Protom synchrotrons for proton therapy, Int. J. Part. Ther. 7, 198—199 (2021).

    Google Scholar 

  30. Wang et al., “Evaluation and comparison of New 4DCT based strategies for proton treatment planning for lung tumors,” Rad. Oncol. 8, 73 (2013).

    Article  Google Scholar 

  31. M. S. Belikhin, I. N. Grigoryeva, A. A. Zavestovskaya, A. P. Pryanichnikov, A. E. Chernyaev, and A. E. Shemyakov, “Experimental study of the target motion effect on the dose distribution in scanning proton beam therapy,” Bull. Lebedev Phys. Inst. 49, 132—136 (2022).

    Article  ADS  Google Scholar 

  32. M. Belikhin, A. Pryanichnikov, A. Shemyakov, and A. Chernyaev, “Experimental dosimetric estimation of volume rescanning for spot scanning proton therapy,” Phys. Med. 94, 86—87 (2022).

    Article  Google Scholar 

  33. M. A. Belikhin, A. P. Chernyaev, A.A. Pryanichnikov, and A.E. Shemyakov, “Experimental simulation of volume repainting technique at proton synchrotron in context of spot scanning proton therapy,” in Proceedings of Russian Particle Accelerator Conference RuPAC’21, 2021, pp. 192–195.

  34. A. Pryanichnikov, P. Zhogolev, A. Shemyakov, M. Belikhin, and A. Chernyaev, “Development of the low intensity beam extraction mode for proton imaging at Protom synchrotron, Phys. Med. 94, 113 (2022).

    Article  Google Scholar 

  35. A. A. Pryanichnikov, P. B. Zhogolev, A. E. Shemyakov, M. A. Belikhin, A. P. Chernyaev, and V. Rykalin, “Low intensity beam extraction mode on the Protom synchrotron for proton radiography implementation,” J. Phys.: Conf. Ser. 2058, 012041 (2021).

    Google Scholar 

  36. A. Pryanichnikov, P. Zhogolev, A. Shemyakov, M. Belikhin, and V. Rykalin, “New beam extraction mode on Protom synchrotrons for proton tomography,” Int. J. Part. Therapy 7, 158 (2021).

    Google Scholar 

  37. A. Roberts et al., “Measured bremsstrahlung photonuclear production of 99Mo (99mTc) with 34 MeV to 1.7 GeV electrons,” Appl. Rad. Isotopes 96, 122—128 (2015).

    Article  Google Scholar 

  38. C. Loveless et al., “Photonuclear production, chemistry, and in vitro evaluation of the theranostic radionuclide 47Sc,” EJNMMI Res. 9, 42 (2019).

    Article  Google Scholar 

  39. R. Aliev et al., “Photonuclear production of medically relevant radionuclide 47Sc,” J. Radioanal. Nucl. Chem. 326, 1099–1106 (2020).

    Article  Google Scholar 

  40. G. Hovhannisyan, T. Bakhshiyan, and R. Dallakyan, “Photonuclear production of the medical isotope 67Cu,” Nucl. Instrum. Methods Phys. Res., Sect. B 498, 48–51 (2021).

    Google Scholar 

  41. M. V. Zheltonozhskaya, V. A. Zheltonozhsky, E. N. Lykova, et al., “Production of zirconium-89 by photonuclear reactions,” Nucl. Instrum. Methods Phys. Res., Sect. B 470, 38–41 (2020). https://doi.org/10.1016/j.nimb.2020.03.002

    Article  Google Scholar 

  42. A. Zheltonozhskiy, M. V. Zheltonozhskaya, P. D. Remizov, et al., “Study of reactions with the emission of protons on 179, 180Hf,” Bull. Russ. Acad. Sci.: Phys. 86, 1309–1314 (2022). https://doi.org/10.3103/S1062873822090349

    Article  Google Scholar 

  43. V. A. Zheltonozhsky, A. M. Savrasov, M. V. Zheltonozhskaya, and A. P. Chernyaev, “Excitation of Lu-177,178 in reactions with bremsstrahlung with esca** of charged particles,” Nucl. Instrum. Methods Phys. Res., Sect. B 476, 68–72 (2020). https://doi.org/10.1016/j.nimb.2020.04.012

    Article  Google Scholar 

  44. V. A. Zheltonozhsky, M. V. Zheltonozhskaya, A. V. Savrasov, et al., “Studying the excitation of k-isomers of 180, 182Hf and 177Lu in (γ, α) reactions,” Phys. Part. Nucl. Lett. 18, 319–322 (2021). https://doi.org/10.1134/S1547477121030134

    Article  Google Scholar 

  45. V. A. Zheltonozhsky, A. M. Savrasov, M. V. Zheltonozhskaya, and A. P. Chernyaev, “Excitation of 180Hfm with (gamma, p)-reaction,” Eur. Phys. J. A 57, 121(2021). https://doi.org/10.1140/epja/s10050-021-00432-9

    Article  ADS  Google Scholar 

  46. S. Reddy and M. Robinson, “Immuno-positron emission tomography in cancer models,” Seminars Nucl. Med. 40, 182—189 (2010).

    Article  Google Scholar 

  47. A. Dabkowski et al., “Optimization of cyclotron production for radiometal of zirconium 89,” Acta Phys. Polon. A 127, 1479–1482 (2015).

    Article  ADS  Google Scholar 

  48. N. Sairanbayev, S. Koltochnik, A. Shaimerdenov, Y. Chakrova, A. Gurin, and Yu. Kenzhin, “Analysis of lutetium-177 production at the WWR-K research reactor,” Appl. Radiat. Isot. 169, 109561 (2021). https://doi.org/10.1016/j.apradiso.2020.109561

    Article  Google Scholar 

  49. V. V. Rozanov and I. V. Matveichuk, “Current State and promising innovative directions for the development of bioimplant sterilization methods,” Al’manakh Klinich. Med. 47, 634—646 (2019).

    Google Scholar 

  50. Trends in Radiation Sterilization of Health Care Products (IAEA, Vienna, 2008).

  51. H. Nguyen, A. I. Cassady, M. B. Bennett, et al., “Reducing the radiation sterilization dose improves mechanical and biological quality while retaining sterility assurance levels of bone allografts,” Bone 57, 194–200 (2013).

    Article  Google Scholar 

  52. I. V. Matveichuk, V. V. Rozanov, I. K. Gordonova, Z. K. Nikitina, N. I. Sidel’nikov, Yu. Yu. Litvinov, A. A. Nikolaeva, A. P. Chernyaev, and I. V. Panteleev, RF Patent No. 2630464 (2017).

  53. V. V. Rozanov, I. V. Matveichuk, A. P. Chernyaev, N. A. Nikolaeva, and L. N. Savvinova, “Study of the structural and functional characteristics of the surface of bone implants during combined sterilization,” Izv. Ross. Akad. Nauk. Ser. Fiz. 84, 1587—1592 (2020).

    Google Scholar 

  54. F. R. Studenikin, U. A. Bliznyuk, A. P. Chernyaev, et al., “Impact of aluminum plates on uniformity of depth dose distribution in object during electron processing,” Moscow Univ. Phys. Bull. 76, S1–S7 (2021).

    Article  Google Scholar 

  55. U. A. Bliznyuk, P. Yu. Borshchegovskaya, V. S. Ipatova, et al., “Determining the beam spectrum of industrial electron accelerator using depth dose distribution,” Bull. Russ. Acad. Sci.: Phys. 86, 500–507 (2022).

    Article  Google Scholar 

  56. U. Bliznyuk, P. Borshchegovskaya, T. Bolotnik, et al., “Research into gas chromatography–mass spectrometry (gc-ms) for ensuring the effect of 1 MeV-accelerated electrons on volatile organic compounds in turkey meat,” Separations 9, no. 8 (2022).

  57. U. Bliznyuk, V. Avdyukhina, P. Borshchegovskaya, et al., “Effect of electron and x-ray irradiation on microbiological and chemical parameters of chilled turkey,” Sci. Rep. 12, 750 (2022).

    Article  ADS  Google Scholar 

  58. A. P. Chernyaev, V. V. Rozanov, M. K. Beklemishev, et al., “Using low-energy electrons for the antimicrobial processing of poultry meat,” Bull. Russ. Acad. Sci.: Phys. 84, 1380–1384 (2020).

    Article  Google Scholar 

  59. N. S. Chulikova, A. A. Malyuga, U. A. Bliznyuk, et al., “Impact of 1-MeV election beam irradiation on the phenology and microflora of potatoes,” Bull. Russ. Acad. Sci.: Phys. 86, 1549–1556 (2022).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. P. Chernyaev.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by I. Obrezanova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chernyaev, A.P., Lykova, E.N. State-of-the-Art Nuclear Physics Research in Medicine. Phys. Part. Nuclei Lett. 20, 729–744 (2023). https://doi.org/10.1134/S1547477123040209

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1547477123040209

Navigation