Log in

Electron Parton Distribution Function

  • PHYSICS OF ELEMENTARY PARTICLES AND ATOMIC NUCLEI. THEORY
  • Published:
Physics of Particles and Nuclei Letters Aims and scope Submit manuscript

Abstract

A method for solving the evolution equation for electron parton distribution functions is discussed. Contributions of electron, positron and photon parton types are taken into account within perturbative QED. The iterative solution for the parton distribution of electrons inside an electron is shown. The results for the third iteration are given in the next-to-leading logarithmic approximation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. S. Jadach and M. Skrzypek, “QED challenges at FCC-ee precision measurements,” Eur. Phys. J. C 79, 756 (2019). ar**v:1903.09895.

  2. A. Abada et al. (FCC Collab.), “FCC-ee: the lepton collider: future circular collider conceptual design report volume 2,” Eur. Phys. J. ST 228, 261–623 (2019).

    Article  Google Scholar 

  3. M. Dong et al. (CEPC Study Group Collab.), “CEPC conceptual design report: volume 2–physics and detector,” (2018). ar**v:1811.10545.

  4. H. M. Gray, “Future colliders for the high-energy frontier,” Rev. Phys. 6, 100053 (2021).

    Article  Google Scholar 

  5. E. A. Kuraev and V. S. Fadin, “On radiative corrections to e+e single photon annihilation at high-energy,” Sov. J. Nucl. Phys. 41, 466–472 (1985).

    Google Scholar 

  6. V. N. Gribov and L. N. Lipatov, “Deep inelastic e p scattering in perturbation theory,” Sov. J. Nucl. Phys. 15, 438–450 (1972).

    Google Scholar 

  7. G. Altarelli and G. Parisi, “Asymptotic freedom in parton language,” Nucl. Phys. B 126, 298–318 (1977).

    Article  ADS  Google Scholar 

  8. Y. L. Dokshitzer, “Calculation of the structure functions for deep inelastic scattering and e+ e- annihilation by perturbation theory in quantum chromodynamics,” Zh. Eksp. Teor. Fiz. 46, 641–653 (1977).

    Google Scholar 

  9. A. B. Arbuzov and E. S. Scherbakova, “Next-to-leading order corrections to Bhabha scattering in renormalization group approach. I. Soft and virtual photonic contributions,” JETP Lett. 83, 427–432 (2006). ar**v: hep-ph/0602119.

    Article  ADS  Google Scholar 

  10. A. B. Arbuzov, “Leading and next-to-leading logarithmic approximations in quantum electrodynamics,” Phys. Part. Nucl. 50, 721—8225 (2019).

    Article  Google Scholar 

  11. P. A. Baikov, K. G. Chetyrkin, J. H. Kuhn, and C. Sturm, “The relation between the QED charge renormalized in MSbar and on-shell schemes at four loops, the QED on-shell beta-function at five loops and asymptotic contributions to the muon anomaly at five and six loops,” Nucl. Phys. B 867, 182–202 (2013). ar**v:1207.2199 [hep-ph].

    Article  ADS  MATH  Google Scholar 

  12. A. Arbuzov, “Higher order QED corrections to muon decay spectrum,” J. High Energy Phys. 03, 063 (2003). ar**v:hep-ph/0206036.

  13. J. Blumlein, A. De Freitas, and W. van Neerven, “Two-loop QED operator matrix elements with massive external fermion lines,” Nucl. Phys. B 855, 508–569 (2012). ar**v:1107.4638 [hep-ph].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. F. A. Berends, W. L. van Neerven, and G. J. H. Burgers, “Higher order radiative corrections at LEP energies,” Nucl. Phys. B 297, 429 (1988);

    Article  ADS  Google Scholar 

  15. Erratum: Nucl. Phys. B 304, 921 (1988).

  16. M. Skrzypek, “Leading logarithmic calculations of QED Corrections at LEP,” Acta Phys. Polon. B 23, 135–172 (1992).

    Google Scholar 

  17. J. Ablinger, J. Blümlein, A. De Freitas, and K. Schönwald, “Subleading logarithmic QED initial state corrections to \({{e}^{ + }}{{e}^{ - }} \to {{\gamma {\text{*}}} \mathord{\left/ {\vphantom {{\gamma {\text{*}}} {{{Z}^{{0*}}}}}} \right. \kern-0em} {{{Z}^{{0*}}}}}\) to \(O({{\alpha }^{6}}{{L}^{5}})\),” Nucl. Phys. B 955, 115045 (2020). ar**v:2004.04287.

Download references

Funding

A.B. Arbuzov would like to thank the Russian Foundation for Basic Research for support in the form of grant no. 20-02-00441.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. B. Arbuzov or U. E. Voznaya.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arbuzov, A.B., Voznaya, U.E. Electron Parton Distribution Function. Phys. Part. Nuclei Lett. 20, 412–415 (2023). https://doi.org/10.1134/S1547477123030068

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1547477123030068

Navigation