Log in

Morphology and Structure of a Charge of Detonation Nanodiamond Doped with Boron

  • Published:
Glass Physics and Chemistry Aims and scope Submit manuscript

Abstract

Two versions of powders of a charge of detonation nanodiamond doped with 0.96 and 0.73 wt % boron are obtained by explosion using a mixture of TNT with hexogen (TG) (50/50) or tetryl, respectively. Their morphology, texture, and mesostructure are investigated by scanning electron microscopy, small-angle neutron scattering, and low-temperature nitrogen adsorption. A significant effect of the explosion’s precursor on the structure and morphology of the obtained carbon nanopowders is found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Ho, D., Nanodiamonds: Applications in Biology and Nanoscale Medicine, New York: Springer, 2010.

    Book  Google Scholar 

  2. Detonation Nanodiamonds. Science and Applications, Vul’, A. and Shenderova, O., Eds., New York: Jenny Stanford, 2014.

  3. Shenderova, O.A. and McGuire, G.E., Science and engineering of nanodiamond particle surfaces for biological applications, Biointerphases, 2015, vol. 10,  030802.

    Article  CAS  Google Scholar 

  4. Passeri, D., Rinaldi, F., Ingallina, C., Carafata, M., Rossi, M., Terranova, M.L., and Marianecci, C., Biomedical applications of nanodiamonds: An overview, J. Nanosci. Nanotechnol., 2015, vol. 15, no. 2, pp. 972–988.

    Article  CAS  Google Scholar 

  5. Szunerits, S., Barras, A., and Boukherroub, R., Antibacterial applications of nanodiamonds, Int. J. Environ. Res. Public Health, 2016, vol. 13, no. 4, p. 413.

    Article  Google Scholar 

  6. Solarska-Ściuk, K. and Kleszczyska, H., Possibilities of nanodiamonds application—biological and medical aspects, Acta Pol. Pharm. Drug Res., 2019, vol. 76, no. 5, pp. 779–796.

    Google Scholar 

  7. Gutiérrez, J.M.B., Conceição, Andrade, K., Martinsde, V., Trava-Airoldi, V.J., and Capote, G., High antibacterial properties of DLC film doped with nanodiamond, Surf. Coat. Technol., 2019, vol. 375, pp. 395–401.

    Article  Google Scholar 

  8. Norouzi, N., Ong, Y., Damle, V.G., Najafi, M.B.H., and Schirhagl, R., Effect of medium and aggregation on antibacterial activity of nanodiamonds, Mater. Sci. Eng., C, 2020, vol. 112, 110930.

    Article  CAS  Google Scholar 

  9. Berdichevskiy, G.M., Vasina, L.V., Ageev, S.V., Meshcheriakov, A.A., Galkin, M.A., Ishmukhametov, R.R., Nashchekin, A.V., Kirilenko, D.A., Petrov, A.V., Martynova, S.D., Semenov, K.N., and Sharoyko, V.V., A comprehensive study of biocompatibility of detonation nanodiamonds, J. Mol. Liq., 2021, vol. 332, 115763.

    Article  CAS  Google Scholar 

  10. Dolmatov, V.Yu., Ozerin, A.N., Kulakova, I.I., Bochechka, O.O., Lapchuk, N.M., Myllymaki, V., and Vehanen, A., Detonation nanodiamonds: New aspects in the theory and practice of synthesis, properties and applications, Russ. Chem. Rev., 2020, vol. 89, no. 12, pp. 1428–1462.

    Article  CAS  Google Scholar 

  11. Khamova, T.V., Shilova, O.A., Vlasov, D.Y., Ryabusheva, Y.V., Frank-Kamenetskaya, O.V., Marugin, A.M., Mikhal’chuk, V.M., Ivanov, V.K., and Dolmatov, V.Yu., Bioactive coatings based on nanodiamond-modified epoxy siloxane sols for stone materials, Inorg. Mater., 2012, vol. 48, no. 7, pp. 702–708.

    Article  CAS  Google Scholar 

  12. Shevchenko, V.Y. and Perevislov, S.N., Reaction-diffusion mechanism of synthesis in the diamond–silicon carbide system, Russ. J. Inorg. Chem., 2021, vol. 66, pp. 1107–1114.

    Article  CAS  Google Scholar 

  13. Soboleva, O.A., Porodenko, E.V., and Sergeev, V.G., Oxidized nanodiamond batches as filler for composite films based on polyvinyl alcohol, Russ. J. Gen. Chem., 2017, vol. 87, pp. 1584–1590.

    Article  CAS  Google Scholar 

  14. Shilova, O., Dolmatov, V., Panova, G., Khamova, T., Baranchikov, A., Gorshkova, Yu., Udalova, O., Zhuravleva, A., and Kopitsa, G., Nanodiamond batch enriched with boron: Properties and prospects for use in agriculture, Biointrface Res. Appl. Chem., 2022, vol. 12, pp. 6134–6147.

  15. Plyshevskii, Yu. S., Kherkher, T.E., Knyshev, E. A., Lipinskii, I. E., Vinogradov, A. A., A method of obtaining amorphous boron, USSR Inventor's Certificate no. 831727, 1981.

  16. Kuklin, A.I., Islamov, A.Kh., and Gordeliy, V.I., Scientific reviews: Two-detector system for small-angle neutron scattering instrument, Neutron News, 2006, vol. 16, no. 3, pp. 16–18.

    Article  Google Scholar 

  17. Soloviev, A.G., Solovieva, T.M., and Kuklin, A.I., Package for Small–Angle Neutron Scattering Data Treatment. Program Library JINRLIB. Joint Institute for Nuclear Research. http://wwwinfo.**r.ru/programs/**rlib/sas/indexe.html. Accessed June 21, 2021.

  18. Ostanevich, Yu.M., Time-of-flight small-angle scattering spectrometers on pulsed neutron sources, Macromol. Chem. Macromol. Symp., 1988, vol. 15, no 1, pp. 91–103.

  19. Glatter, O. and Kratky, O., Small-Angle X-Ray Scattering, London: Academic, 1982.

    Google Scholar 

  20. Roe, R.J., Methods of X-Ray and Neutron Scattering in Polymer Science, New York: Oxford Univ. Press, 2000.

    Google Scholar 

  21. Khodan, A.N., Kopitsa, G.P., Yorov, Kh.E., Baranchikov, A.E., Ivanov, V.K., Feoktistov, A., and Pipich, V., Structural analysis of aluminum oxyhydroxide aerogel by small angle scattering, J. Surf. Invest.: X‑ray, Synchrotr. Neutron Tech., 2018, vol. 12, no. 2, pp. 296–305.

    Article  CAS  Google Scholar 

  22. Yorov, K.E., Shekunova, T., Kopitsa, G.P., Almasy, L., Skogareva, L.S., Kozik, V.V., Lermontov, S., and Ivanov, V.K., First rare-earth phosphate aerogel: Sol-gel synthesis of monolithic ceric hydrogen phosphate aerogel, J. Sol-Gel Sci. Technol., 2018, vol. 85, no. 3, pp. 574–584.

    Article  CAS  Google Scholar 

  23. Ivanova, L.A., Ustinovich, K.B., Khamova, T.V., Eneyskaya, E.V., Gorshkova, Y.E., Tsvigun, N.V., Burdakov, V.S., Verlov, N.A., Zinovev, E.V., Asadulaev, M.S., Shabunin, A.S., Fedyk, A.M., Baranchikov, A.Ye., Kopitsa, G.P., and Kulminskaya, A.A., Crystal and supramolecular structure of bacterial cellulose hydrolyzed by cellobiohydrolase from scytalidium candidum 3C: A basis for development of biodegradable wound dressings, Materials, 2020, vol. 13, no. 9, p. 2087.

    Article  CAS  Google Scholar 

  24. Baranchikov, A.E., Kopitsa, G.P., Yorov, Kh.E., Sipyagina, N.A., Lermontov, S.A., Pavlova, A.A., Kottsov, S.Yu., Garamus, V.M., Ryukhtin, V., and Ivanov, V.K., SiO2–TiO2 binary aerogels: A small-angle scattering study, Russ. J. Inorg. Chem., 2021, vol. 66, pp. 874–882.

    Article  CAS  Google Scholar 

  25. Hammouda, B., A new Guinier-Porod model, J. Appl. Crystallogr., 2010, vol. 43, pp. 716–719.

    Article  CAS  Google Scholar 

  26. uinier, A. and Fournet, G., Small-Angle Scattering of X-rays, New York: Wiley, 1955

    Google Scholar 

  27. Bale, H.D. and Schmidt, P.W., Small-angle X-ray-scattering investigation of submicroscopic porosity with fractal properties, Phys. Rev. Lett., 1984, vol. 38, pp. 596–599.

    Article  Google Scholar 

  28. Schmidt, P.W. Some fundamental concepts and techniques useful in small-angle scattering studies of disordered solids, in Modern Aspects of Small-Angle Scattering, Brumberger, H., Ed., Dordrecht: Kluwer, 1995.

    Google Scholar 

  29. Teixeira, J., Experimental methods for studying fractal aggregates, in Growth Form, Dordrecht: Springer, 1986, pp. 145–162.

    Google Scholar 

  30. Schmidt, P.W., Avnir, D., Levy, D., Höhr, A., Steiner, M., and Röll, A., Small-angle X-ray scattering from the surfaces of reversed-phase silicas: Power-law scattering exponents of magnitudes greater than four, J. Chem. Phys., 1991, vol. 94, no. 2, pp. 1474–1479.

    Article  CAS  Google Scholar 

  31. Chuvashova, I.G., Vanetsev, A.S., Gaitko, O.M., Kopitsa, G.P., Garamus, V.M., Orlovskii, Yu.V., and Tret’yakov, Yu.D., Effect of synthesis conditions of the micro- and mesostructure of monodisperse Y(OH)CO3 powders, Dokl. Chem., 2012, vol. 446, no. 2, pp. 207–211.

    Article  CAS  Google Scholar 

  32. Gubanova, N.N., Baranchikov, A.Ye., Kopitsa, G.P., Almasy, L., Angelov, B., Yapryntsev, A.D., Rosta, L., and Ivanov, V.K., Combined SANS and SAXS study of the action of ultrasound on the structure of amorphous zirconia gels, Ultrason. Sonochem., 2015, vol. 24, pp. 230–237.

    Article  CAS  Google Scholar 

  33. Ivanov, V.K., Kopitsa, G.P., Baranchikov, A.Ye., Sharp, M., Pranzas, K., and Grigoriev, S.V., Mesostructure, fractal properties and thermal decomposition of hydrous zirconia and hafnia, Russ. J. Inorg. Chem., 2009, vol. 54, no. 14, pp. 2091–2106.

    Article  Google Scholar 

  34. Putz, A.M., Wang, K., Len, A., Plocek, J., Bezdicka, P., Kopitsa, G.P., Khamova, T.V., Ianăşi, C., Săcărescu, L., Mitróová, S., Savii, C., Yan, M., and Almásy, L., Mesoporous silica obtained with methyltriethoxysilane as co-precursor in alkaline medium, Appl. Surf. Sci., 2017, vol. 424, pp. 275–281.

    Article  CAS  Google Scholar 

Download references

Funding

This study was supported by the Russian Science Foundation (project 19-13-00442).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. V. Khamova.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shilova, O.A., Kopitsa, G.P., Khamova, T.V. et al. Morphology and Structure of a Charge of Detonation Nanodiamond Doped with Boron. Glass Phys Chem 48, 43–49 (2022). https://doi.org/10.1134/S108765962201014X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S108765962201014X

Keywords:

Navigation