Log in

Liquation Differentiation of Komatiites: Features of Isotopic–Geochemical Composition of Rocks, Age, and Petrological–Geodynamic Implications (Using the Example of the Kostomuksha Greenstone Structure, Fennoscandian Shield)

  • Published:
Geology of Ore Deposits Aims and scope Submit manuscript

Abstract

This paper presents the data on the structure and composition of a concentric-zonal komatiite pillow from the Ruvinvaar Formation of the Neo-Archean Kostomuksha greenstone structure of the Fennoscandian Shield. The features of the zonal pillow structure include a narrow range of variations in concentrations of rare-earth elements (REEs), similar REE patterns of dacite and andesite from the pillow core and komatiite and komatiitic basalt from the outer part, and higher REE contents of andesite relative to dacite. These features of REE distribution indicate liquation differentiation of basic melts. According to the Sm–Nd isotopic systematics of rocks of the komatiite matrix and dacite, their isochron age is 2874 ± 35 Ma (εNd = +1.5). Our data indicate an older (than was previously considered) age of the Kontok Group of the Kostomuksha greenschist structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

REFERENCES

  1. Arndt N., Fowler A. Textures in komatiites and variolitic basalts. In: The Precambrian Earth: Tempos and Events, Elsevier, 2004, pp. 298–311.

  2. Bogaerts, M. and Schmidt, M.W., Experiments on silicate melt immiscibility in the system Fe2SiO4– KAlSi3O8–SiO2–CaO–MgO–TiO2–P2O5 and implications for natural magmas, Contrib. Miner. Petrol., 2006, vol. 152, pp. 257–274.

    Article  CAS  ADS  Google Scholar 

  3. Bykov, V.N. and Koroleva, O.N., Thermodynamic simulation of the behavior of network-modifying cations in multicomponent silicate melts, Geochem. Int., 2010, vol. 48, no. 11, pp. 1128–1130.

    Article  Google Scholar 

  4. De, A., Silicate liquid immiscibility in the Deccan Traps and its petrogenetic significance, Geol. Soc. Am. Bull., 1974, vol. 85, no. 3, pp. 471–474.

    Article  CAS  ADS  Google Scholar 

  5. DePaolo, D.J., Trace-element and isotopic effects of combined wallrock assimilation and fractional crystallization, Earth Planet. Sci. Lett, 1981, vol. 53, pp. 189–202.

    Article  CAS  ADS  Google Scholar 

  6. Dixon, J.E., Stolper, E.M., and Holloway, J.R., An experimental study of water and carbon dioxide solubilities in mid ocean ridge basaltic liquids. I. Calibration and solubility models, J. Petrol., 1995, vol. 36, pp. 1607–1631.

    CAS  Google Scholar 

  7. Fowler, A.D., Jensen, L.S., and Peloquin, S.A., Varioles in Archean basalts: products of spherulitic crystallization, Can. Mineral., 1986, vol. 25, pp. 275–289.

    Google Scholar 

  8. Fowler, A.D., Berger, B., Shore, M., Jones, M.I., and Ropchan, J., Supercooled rocks: development and significance of varioles, spherulites, dendrites and spinifex in Archean volcanic rocks, Abitibi Greenstone Belt, Canada. Precambrian Res., 2002, vol. 115, pp. 311–328.

    Article  CAS  ADS  Google Scholar 

  9. Goldstein, S.J. and Jacobsen, S.B., Nd and Sr isotopic systematics of rivers water suspended material: implications for crustal evolution, Earth Planet. Sci. Lett., 1988, vol. 87, pp. 249–265.

    Article  CAS  ADS  Google Scholar 

  10. Gorkovets, V.Ya., Rayevskaya, M.B., Belousov, E.F., and Inina, K.A., Geologiya i metallogeniya raiona Kostomukshskogo zhelezorudnogo mestorozhdeniya (Geology and Metallogeny of the Kostomuksha Iron Deposit Area), Petrozavodsk: Kareliya, 1981.

  11. Gosudarstvennaya geologicheskaya karta Rossijskoj Federacii masshtaba 1 : 1 000 000 (tret’e pokolenie). Seriya Baltijskaya. List Q-(35), 36-Apatity. Ob”yasnitel’naya zapiska (State Geological Map of the Russian Federation on a Scale 1 : 1 000 000 (3rd Generation). Baltiiskaya Series. Sheets Q-(35), 36—Apatity. Explanatory Notes), Bogdanov, Yu.B., Eds., St. Petersburg: VSEGEI, 2012.

  12. Green, D.H., Experimental petrology of peridotites, including effects of water and carbon on melting in the Earth’s upper mantle, Phys. Chem. Miner., 2015, vol. 42, pp. 95–122.

    Article  CAS  ADS  Google Scholar 

  13. Gudin, A.N., Dubinina, E.O., and Nosova, A.A., Petrogenesis of variolitic lavas of the Onega structure, Central Karelia, Petrology, 2012, vol. 20, no. 3, pp. 255–270.

    Article  CAS  Google Scholar 

  14. Hamann, C., Hecht, L., Ebert, M., and Wirth, R., Chemical projectile-target interaction and liquid immiscibility in impact glass from the Wabar craters, Saudi Arabia, Geochim. Cosmochim. Acta, 2013, vol. 121, pp. 291–310.

    Article  CAS  ADS  Google Scholar 

  15. Hanski, E.J., Globular ferropicritic rocks at Pechenga, Kola Peninsula (Russia): liquid immiscibility versus alteration, Lithos, 1993, vol. 29, pp. 197–216.

    Article  CAS  ADS  Google Scholar 

  16. Head, J.W. and Wilson, L., Deep submarine pyroclastic eruptions: theory and predicted landforms and deposits, J. Volcanol. Geotherm. Res., 2003, vol. 121, pp. 155–193.

    Article  CAS  ADS  Google Scholar 

  17. Holness, M.B., Stripp, G., Humphreys, M.C.S., Veksler, I.V., Nielsen, T.F.D., and Tegner, C., Silicate liquid immiscibility within the crystal mush: late-stage magmatic microstructures in the Skaergaard intrusion, East Greenland, Precambrian Res., 2011, vol. 52, pp. 175–222.

    CAS  Google Scholar 

  18. Huhma, H., Mänttäri, I., Peltonen, P., et al., The age of the Archaean greenstone belts in Finland, Geol. Surv. Finland, Spec. Pap., 2012, vol. 54, pp. 74–175.

    Google Scholar 

  19. Inoue, T., Rapp, R.P., Zhang, J., Gasparik, T., Weidner, D.J., and Irifune, T., Garnet fractionation in a hydrous magma ocean and the origin of Al-depleted komatiites: melting experiments of hydrous pyrolite with REEs at high pressure, Earth Planet. Sci. Lett., 2000, vol. 177, pp. 81–87.

    Article  CAS  ADS  Google Scholar 

  20. Jacobsen, S.B. and Wasserburg, G.J., Sm-Nd evolution of chondrites and achondrites, Earth Planet. Sci. Lett, 1984, vol. 67, pp. 137–150.

    Article  CAS  ADS  Google Scholar 

  21. Khimicheskij analiz v geologii i geokhimii (Chemical Analysis in Geology and Geochemistry), Anoshin, G.N., Eds., Novosibirsk: Geo, 2016.

    Google Scholar 

  22. Kozhevnikov, V.N., Arheiskie zelenokamennye poyasa Karel’skogo kratona kak akkrecionnye orogeny (Archean Greenstone Belts in the Karelian Craton as Accretionary Orogens), Petrozavodsk: IG KarNTs, 2000.

  23. Lobach-Zhuchenko, S.B., Arestova, N.A., Milkevich, R.I., Levchenkov, O.A., and Sergeev, S.A., The stratigraphic section of the Kostomuksha structure, Karelia (Upper Archean): Reconstructions based on geochronology, geochemical, and isotope data, Stratigraphy. Geol. Correlation, 2000, vol. 8, no. 4, pp. 319–326.

    Google Scholar 

  24. McBirney, A.R., The Skaergaard intrusion, Developments in Petrology, Elsevier, 1996, pp. 147–180.

    Google Scholar 

  25. McDonough, W.F. and Sun, S.-S., The composition of the Earth, Chem. Geol., 1995, vol. 120, pp. 223–253.

    Article  CAS  ADS  Google Scholar 

  26. Milkevich, R.I. and Arestova, N.A., Metakomatiites in the BIF section, Kostomuksha greenstone belt, Lithol. Miner. Resour., 1999, vol. 34, no. 5, pp. 471–477.

    Google Scholar 

  27. Mineral deposits and metallogeny of Fennoscandia, Geol. Surv. Finland, Spec. Pap., 2012, vol. 53.

  28. Murphy, D.T., Wiemer, D., Bennett, V.C., et al., Paleoarchean variole-bearing metabasalts from the East Pilbara Terrane formed by hydrous fluid phase exsolution and implications for Archean greenstone belt magmatic processes, Precambrian Res., 2021, vol. 357, pp. 106–114.

    Article  Google Scholar 

  29. Mysen, B.O., Element partitioning between minerals and melt, melt composition and melt structure, Chem. Geol., 2004, vol. 213, pp. 1–16.

    Article  CAS  ADS  Google Scholar 

  30. Papunen, H., Halkoaho, T., and Luukkonen, E., Archaean evolution of the Tipasjarvi-Kuhmo-Suomussalmi Greenstone Complex, Finland, Bull. Geol. Surv. Finland, 2009, vol. 403.

  31. Philpotts, A.R., Silicate liquid immiscibility: its probable extent and petrogenetic significance, Amer. J. Sci., 1976, vol. 276, pp. 1147–1177.

    Article  CAS  ADS  Google Scholar 

  32. Philpotts, A.R., Compositions of immiscible liquids in volcanic rocks, Contrib. Mineral. Petrol., 1982, vol. 80, no. 3, pp. 201–218.

    Article  CAS  ADS  Google Scholar 

  33. Puchtel, I.S., Brugmann, G.E., and Hofmann, A.W., 187Os-enriched domain in an Archean mantle plume: evidence from 2.8 Ga komatiites of the Kostomuksha greenstone belt, NW Baltic Shield, Earth Planet. Sci. Lett., 2001, vol. 186, pp. 513-526.

    Article  ADS  Google Scholar 

  34. Puchtel, I.S., Hofman, A.W., Mezger, K., et al., Oceanic plateau model for continental crustal growth in the Archean: a case study from the Kostomuksha greenstone belt, NW Baltic Shield, Earth Planet. Sci. Lett, 1998, vol. 155, pp. 57–74.

    Article  CAS  ADS  Google Scholar 

  35. Pugin, V.A. and Khitarov, N.I., Variolites as an example of magma immiscibility, Geokhimiya, 1980, no. 4, pp. 496–512.

  36. Roedder, E., Silicate immiscibility in magmas, in: The Evolution of the Igneous Rocks, Princeton, 1979, pp. 15–57.

  37. Sandsta, N.R., Robins, B., Furnes, H., et al., The origin of large varioles in flow-banded pillow lava from the Hooggenoeg Complex, Barberton Greenstone Belt, South Africa, Contrib. Mineral. Petrol., 2011, vol. 162, pp. 365–377.

    Article  CAS  ADS  Google Scholar 

  38. Schmidt, M.W., Connolly, J.A.D., Gunther, D., and Bogaerts, M., Element partitioning - the role of melt structure and composition, Science, 2006, vol. 16, no. 5780, pp. 1646–50.

    Article  ADS  Google Scholar 

  39. Sergeev S.A., Levchenkov O.A., Arestova N.A. Age boundaries of the formation of iron ore strata, Kostomuksha structure (Karelia), in: Tez. soveshchaniya “Izotopnoe datirovanie endogennyh rudnyh formatsii” (Isotope Dating of Endogenous Ore Formations. Abstracts of Conference), Kyiv: Naukova Dumka, 1990, pp. 72–73.

  40. Shchekina, T.I., Rusak, A.A., Alferyeva, Y.O., Gramenitskiy, E.N., Zinovieva, N.G., Bychkov, A.Y., Bychkova, Y.V., Kotelnikov, A.R., and Khvostov, V.F., REE, Y, Sc and Li partition between aluminosilicate and aluminofluoride melts, depending on pressure and water content in the model granite systems, Geochem. Int, 2020, vol. 58, no. 4, pp. 391–407.

    Article  CAS  Google Scholar 

  41. Smolkin, V.F., Komatiitovyi i pikritovyi magmatizm rannego dokembriya Baltijskogo shchita (Komatiite and Picrite Magmatism of the Early Precambrian, Baltic Shield), St. Petersburg: Nauka, 1992.

    Google Scholar 

  42. Sobolev, A.V., Asafov, E.V., Gurenko, A.A., Arndt, N.A., Batanova, V.G., Portnyagin, M.V., Garbe-Schonberg, D., and Krasheninnikov, S.P., Komatiites reveal a hydrous Archaean deep-mantle reservoir, Nature, 2016, vol. 531, pp. 628–632.

    Article  CAS  PubMed  ADS  Google Scholar 

  43. Sossi, P.A., Eggins, S.M., Nesbitt, R.W., et al., Petrogenesis and geochemistry of Archean komatiites, J. Petrol, 2016, vol. 57, pp. 147–184.

    Article  CAS  ADS  Google Scholar 

  44. Staudea, S., Jones, T.J., and Markla, G., The textures, formation and dynamics of rare high-MgO komatiite pillow lavas, Precambrian Res., 2020, vol. 343, p. 105729.

    Article  Google Scholar 

  45. Svetov, S.A., Magmaticheskie sistemy zony perekhoda okean-kontinent v arhee vostochnoj chasti Fennoskandinavskogo shchita (Magmatic Systems of the Ocean–Continent Transition Zone in the Archaea of the Eastern Fennoscandian Shield), Petrozavodsk, 2005.

  46. Svetov, S.A., Liquation differentiation in basaltic systems: evidence from Suisarian variolites of the Yalguba Range), Geol. Polezn, Iskop. Karelii, 2008, no. 11, pp. 120–134.

  47. Thompson, A.B., Aerts, M., and Hack, A.C., Liquid immiscibility in silicate melts and related systems, Rev. Mineral. Geochem., 2007, vol. 65, pp. 99–127.

    Article  CAS  Google Scholar 

  48. Veksler, I.V., Dorfman, A.M., Danyushevsky, L.V., et al., Immiscible silicate liquid partition coefficients: implications for crystal-melt element partitioning and basalt petrogenesis, Contrib. Mineral. Petrol., 2006, vol. 152, pp. 685–702.

    Article  CAS  ADS  Google Scholar 

  49. Veksler, I.V., Dorfman, A.M., Borisov, A.A., et al., Liquid immiscibility and the evolution of basaltic magma, J. Petrol., 2007, vol. 48, pp. 2187–2210.

    Article  CAS  ADS  Google Scholar 

  50. Viljoen, M. and Viljoen, R., Evidence for the existence of amobile extrusive peridotitic magma from the Komati Formation of the Onverwacht Group, in Upper Mantle Project: Geol. Soc. South Afri., Spec. Publ., 1969, vol. 2, pp. 87–112.

    Google Scholar 

  51. Volodichev, O.I., On felsic derivatives of komatiitic and tholeiitic basalts from the Kostomuksha structure, Fennoscandian shield, in Granit-zelenokamennye sistemy arkheya i ikh pozdnie analogi. Mat. nauchn konf. i putevoditel' ekskursii (Granite-Greenstone Systems of Archean and their Later Analogues. Proc. Sci. Conf. and a Guide to Excursions), Petrozavodsk, 2009, pp. 37–40.

  52. Volodichev, O.I., Kuzenko, T.I., and Kozlov, S.S., To the structural-metamorphic study of metavolcanic rocks of the Kontokky Series of the Kostomuksha structure, in: Geologiya i poleznye iskopaemye Karelii (Geology and Minerals of Karelia), Petrozavodsk: 2002, pp. 15–26.

    Google Scholar 

  53. Vrevskii, A.B., Non-subduction petrological mechanisms for the growth of the Neoarchean continental crust of the Kola-Norwegian Terrane, Fennoscandian Shield: Geological and isotope-geochemical evidence, Petrology, 2019, vol. 27, no. 2, pp. 146–170.

    Article  CAS  Google Scholar 

  54. Watson, E.B., Two-liquid partition coefficients: Experimental data and geochemical implications, Contrib. Mineral. Petrol., 1976, vol. 56, pp. 119–143.

    Article  CAS  ADS  Google Scholar 

Download references

Funding

This work was supported by state contract no. FMUW-2022-0004.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. B. Vrevsky.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by I. Melekestseva

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vrevsky, A.B. Liquation Differentiation of Komatiites: Features of Isotopic–Geochemical Composition of Rocks, Age, and Petrological–Geodynamic Implications (Using the Example of the Kostomuksha Greenstone Structure, Fennoscandian Shield). Geol. Ore Deposits 65, 921–932 (2023). https://doi.org/10.1134/S107570152308010X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S107570152308010X

Keywords:

Navigation