Log in

Magmatic–Fluid System of the Vysokogorskoe Porphyry Tin Deposit (Sikhote-Alin, Kavalerovo Ore District, Primorsky Krai, Russia): a Magmatic Stage

  • Published:
Geology of Ore Deposits Aims and scope Submit manuscript

Abstract

Inclusions of the mineral-forming media in quartz of the Vysokogorskoe deposit are studied in detail. The compositions of the melts correspond to peraluminous potassium granites of normal alkalinity, depleted in rare alkalis, F, and Cl. The water content in the melts reached 7–9 wt %; CO2 and CH4 were also important in mineralizing fluids. Quartz crystallized at 620–650°C. Assemblages of four types have been identified as primary fluid inclusions: (1) inclusions of carbonate or sulfate aqueous solutions coexisting with melt inclusions, (2) low-density vapor-dominated primarily magmatic inclusions, (3) presumably postmagmatic low-salinity aqueous and vapor-dominated inclusions, and (4) multiphase fluid inclusions associated with vapor-dominated ones also formed at the postmagmatic stage. Daughter pyrosmalite–(Fe) and hibbingite, which was found for the first time in inclusions from quartz of the Vysokogorskoe deposit, made it possible to characterize the solutions as high-salinity chloride Na/K and Fe2+. Presumably, those solutions may have been the most efficient in Sn transport during the formation of fluid–explosive breccias and vein mineralization of the Vysokogorskoe deposit. The magma chamber itself most likely served as a heat source and, to a large extent, a source of aqueous fluid for the hydrothermal system of the deposit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

REFERENCES

  1. Audetat, A., The metal content of magmatic–hydrothermal fluids and its relationship to mineralization potential, Econ. Geol., 2019, vol. 114, no. 6, pp. 1033–1056.

    Article  Google Scholar 

  2. Audétat, A., Pettke, T., Heinrich, C.A., and Bodnar, R.J., The composition of magmatic-hydrothermal fluids in barren and mineralized intrusions, Econ. Geol., 2008, vol. 103, pp. 877–908.

    Article  Google Scholar 

  3. Blevin, P.L. and Chappell, B.W., The role of magma sources, oxidation states and fractionation in determining the granite metallogeny of eastern Australia, Trans. R. Soc. Edinb.: Earth Sci., 1992, vol. 83, pp. 305–316.

    CAS  Google Scholar 

  4. Bodnar, R. and Student, J., Melt inclusions in plutonic rocks: petrography and microthermometry, Melt Inclusions in Plutonic Rocks, Webster J., Eds., MAC Short Course, 2006, vol. 36, pp. 1–25.

    Google Scholar 

  5. Bortnikov, N.S., Geochemistry and origin of the ore-forming fluids in hydrothermal–magmatic systems in tectonically active zones, Geol. Ore Deposits, 2006, vol. 48, no. 1, pp. 1–22.

    Article  ADS  Google Scholar 

  6. Bortnikov, N.S., Khanchuk, A.I., Krylova, T.L., Anikina, E.Yu., Gorelikova, N.V., Gonevchuk, V.G., Ignat’ev, A.V., Kokorin, A.M., Korostelev, P.G., Lomm, T., Geochemistry of the mineral-forming fluids in some tin-bearing hydrothermal systems of Sikhote Alin, the Russian Far East, Geol. Ore Deposits, 2005, vol. 47, no. 6, pp. 488–516.

    Google Scholar 

  7. Bortnikov, N.S., Kryazhev, S.G., Gonevchuk, V.G., Gorelikova, N.V., and Ryabchenko, V.M., Balashov, F.V., Mixing of magmatic brines and meteoric fluids in the Vysokogorskoe tin–porphyry deposit (Primorye, Russia), Dokl. Earth Sci., 2013, vol. 453, no. 2, pp. 1218–1222.

    Article  CAS  ADS  Google Scholar 

  8. Bortnikov, N.S., Aranovich, L.Ya., Kryazhev, S.G., Smirnov, S.Z., Gonevchuk, V.G., Semenyak, B.I., Dubinina, E.O., Gorelikova, N.V., and Sokolova, E.N., Badzhal tin magmatic–fluid system, Far East, Russia: transition from granite crystallization to hydrothermal ore deposition, Geol. Ore Deposits, 2019, vol. 61, no. 3, pp. 199–224.

    Article  ADS  Google Scholar 

  9. Burke, E.A.J., Raman microspectrometry of fluid inclusions, Lithos, 2001, vol. 55, no. 1, pp. 139–158.

    Article  CAS  ADS  Google Scholar 

  10. Burnham, C.W., Energy release in subvolcanic environments; implications for breccia formation, Econ. Geol., 1985, vol. 80, no. 6, pp. 1515–1522.

    Article  Google Scholar 

  11. Cerny, P., Blevin, P.L., Cuney, M., and London, D., Granite-related ore deposits, Econ. Geol., 2005, vol. 100, pp. 337–370.

    Google Scholar 

  12. Chappell, B.W. and White, A.J.R., I- and S-type granites in the Lachlan Fold Belt, Trans. R. Soc. Edinb.: Earth Environ. Sci., 1992, vol. 83, pp. 1–26.

    CAS  Google Scholar 

  13. Davidson, P. and Kamenetsky, V.S., Primary aqueous fluids in rhyolitic magmas: melt inclusion evidence for pre- and post-trap** exsolution, Chem. Geol., 2007, vol. 237, pp. 372–383.

    Article  CAS  ADS  Google Scholar 

  14. Dietrich, A. and Lehmann, B., Bulk rock and melt inclusion geochemistry of Bolivian tin porphyry systems, Econ. Geol., 2000, vol. 95, pp. 313–326.

    Article  CAS  Google Scholar 

  15. Dietrich, A., Lehmann, B., Wallianos, A., and Traxel, K., Magma mixing in Bolivian tin porphyries, Naturwissenschaften, 1999, vol. 86, pp. 40–43.

    Article  CAS  ADS  Google Scholar 

  16. Eugster, H.P., Minerals in hot water, Am. Mineral., 1986, vol. 71, pp. 655–673.

    CAS  Google Scholar 

  17. Fersman, A.E., Izbrannye trudy, tom 5 (Selected Papers. Volume 5), Moscow: Izd-vo AN SSSR, 1959.

  18. Gonevchuk, V.G., Olovonosnye sistemy Dal’nego Vostoka: magmatizm i rudogenez (Far East Tin-Bearing Systems: Magmatism and Ore Genesis), Vladivostok: Dal’nauka, 2002.

  19. Gonevchuk, V.G., Kokorin, A.M., Korostelev, P.G., et al., On problems with formation-based classification of tin deposits, Tikhookeanskii rudnyi poyas: materialy novykh issledovanii. Sbornik k stoletiyu E.A. Radkevich (Pacific Ore Belt. Proc. New Studies. Papers Dedicated to 100th Anniversary of E.A. Radkevich), Vladivostok: Dal’nauka. 2008, pp. 70–89.

    Google Scholar 

  20. Gonevchuk, V.G., Semenyak, B.I., Ishikhara, S., et al., Age of tin-bearing greisens in Priamur’e, Russia, and some genetic problems of tin mineralization, Geol. Ore Deposits, 1998, vol. 40, no. 4, pp. 290–298.

    Google Scholar 

  21. Harris, A.C., Kamenetsky, V.S., White, N.C., van Achterbergh, E., and Ryan, C.G., Melt inclusions in veins: linking magmas and porphyry Cu deposits, Science, 2003, pp. 2109–2111.

  22. Huang, W.-L. and Wyllie, P.J., Melting reactions in the system NaAlSi2O8–KAlSi3O8–SiO2 to 35 kilobars, dry and excess water, J. Geol., 1975, vol. 83, pp. 737–748.

    Article  CAS  ADS  Google Scholar 

  23. Grant, J.N., Halls, C., Sheppard, S.M.F., Avila, W., Evolution of the porphyry tin deposits of Bolivia, In Granitic Magmatism and Related Mineralization, Ishihara, S. and Takenouchi, S., Eds., Mining Geol. Spec. Issue, Society of Mining Geology, Tokyo, 1980, no. 8, pp. 151–174.

  24. Janecka, J. and Stemprok, M., Endogenous tin mineralization in the Bohemian Massif, Internat Tin Council, 1967, vol. 1, pp. 245–266.

    Google Scholar 

  25. Kamenetsky, V.S., Naumov, V.B., Davidson, P., van Achtenberg, E., and Ryan, C.G., Immiscibility between silicate magmas and aqueous fluids: a melt inclusion pursuit into the magmatic-hydrothermal transition in the omsukchan granite (NE Russia), Chem. Geol., 2004, vol. 210, pp. 73–90.

    Article  CAS  ADS  Google Scholar 

  26. Khanchuk, A.I., Paleogeodynamic analysis of the formation of the Far East Ore Deposits, in Rudnye mestorozhdeniya kontinental’nykh okrain (Ore Deposits of Continental Margins), Vladivostok: Dal’nauka, 2000, vol. 1, pp. 5–34.

  27. Khanchuk, A.I., Gonevchuk, V.G., Bortnikov, N.S., and Gorelikova, N.V., Paleogeodynamic model of Sikhote-Alin tin-bearing system (Russia), Mineral Exploration and Sustainable Development: Proceedings of the 7th Biennial SGA Meeting, Rotterdam: Millpress, 2003, vol. 1.

  28. Kodera, P., Takacs, A., Racek, M., Simko, F., and Luptakova, J., Vaczi t., antal p. javorieite, kfecl3: a new mineral hosted by salt melt inclusions in porphyry gold systems, Eur. J. Mineral, 2017, vol. 29, pp. 995–1004.

    Article  CAS  ADS  Google Scholar 

  29. Kodera, P., Majzlan, J., Pollok, K., Kiefer, S., Simko, F., Scholtzova, E., Luptakova, J., and Grant, C., Ferrous hydroxychlorides hibbingite [γ-Fe2(OH)3Cl] and parahibbingite [β-Fe2(OH)3Cl] as a concealed sink of Cl and H2O in ultrabasic and granitic systems, Am. Mineral., 2022, vol. 107, pp. 826–841.

    Article  ADS  Google Scholar 

  30. Kokorin, A.M., Gonevchuk, V.G., Kokorina, D.K., and Orekhov, A.A., Vysokogorskoe tin-bearing deposit: mineralization and genesis, Rudnye mestorozhdeniya kontinental’nykh okrain (Ore Deposits of Continental Margins), Vladivostok: Dal’nauka, 2001, Vol. 2, pp. 156–171.

    Google Scholar 

  31. Kovalenko, V.I., Petrologiya i geokhimiya redkometall’nykh granitov (Petrology and Geochemistry of Rare-Metal Granites), Novosibirsk: Nauka, 1977.

  32. Lavrent’ev, Yu.G., Karmanov, N.S., and Usova, L.V., Electron probe microanalysis of mienrals: microanalyzer or scanning electron microscope?, Russ. Geol. Geophys., 2015, vol. 56, no. 8, pp. 1154–1161.

    Article  ADS  Google Scholar 

  33. Lehmann, B., Ishihara, S., Michel, H., Miller, J., Rapela, C., Sanchez, A., Tistl, M., and Winkelmann, L., The Bolivian tin province and regional tin distribution in the Central Andes: a reassessment, Econ. Geol., 1990, vol. 85, pp. 1044–1058.

    Article  CAS  Google Scholar 

  34. Lehmann, B., Metallogeny of Tin, Berlin: Springer, 1990.

    Google Scholar 

  35. Lehmann, B., Formation of tin ore deposits: a reassessment, Lithos, 2021, pp. 402–403.

  36. Lehmann, B., Dietrich, A., and Wallianos, A., From rocks to ore, Int. J. Earth Sci., 2000, vol. 89, pp. 284–294.

    Article  CAS  Google Scholar 

  37. Linnen, R.L., Depth of emplacement, fluid provenance and metallogeny in granitic terranes: a comparison of western Thailand with other tin belts, Mineral. Deposita, 1998, vol. 33, pp. 461–476.

    Article  CAS  ADS  Google Scholar 

  38. Morgan, G.B. and London, D., Effect of current density on the electron microprobe analysis of alkali aluminosilicate glasses, Am. Mineral., 2005, vol. 90, pp. 1131–1138.

    Article  CAS  ADS  Google Scholar 

  39. Murphy, P.J. and Rankin, A.H., Retrograde mineral reactions in saline fluid inclusions: the transformation ferropyrosmalite ↔ clinopyroxene, Am. Mineral., 2003, vol. 88, no. 1, pp. 151–158.

    Article  ADS  Google Scholar 

  40. Nokleberg, W.J., Bundsten, T.K., Eremin, R.A., et al., Metallogenesis and tectonics of the Russian Far East, Alaska, and the Canadian Cordillera, US Geol. Surv., 2005, no. 1697.

  41. Peretyazhko, I.S., Prokof’ev, V.Yu., Zagorskii, V.E., and Smirnov, S.Z., Role of boric acids in the formation of pegmatite and hydrothermal minerals: petrologic consequences of sassolite (H3BO3) discovery in fluid inclusions, Petrology, 2000, vol. 8, no. 3, pp. 214–237.

    Google Scholar 

  42. Pollard, P.J., Pichavant, M., and Charoy, B., Contrasting evolution of fluorine- and boron-rich tin systems, Mineral. Deposita, 1987, vol. 22, pp. 315–321.

    Article  CAS  ADS  Google Scholar 

  43. Roedder, E., Fluid Inclusions, Rev. Mineral., 1984, vol. 12.

  44. Ryabchenko, V.M., Gonevchuk, V.G., Gorelikova, N.V., and Gonevchuk, G.A., Explosion breccias of the Vysokogorskoe tin–porphyry deposit: genesis and role in ore formation (Kavalerovo Ore District, Primorye), Russ. J. Pac. Geol., 2017, vol. 11, no. 3, pp. 191–204.

    Article  Google Scholar 

  45. Schmidt, C., Formation of hydrothermal tin deposits: Raman spectroscopic evidence for an important role of aqueous Sn(IV) species, Geochim. Cosmochim. Acta, 2018, vol. 220, pp. 499–511.

    Article  CAS  ADS  Google Scholar 

  46. Sillitoe R.H. Andean mineralization: a model for the metallogeny of convergent plate margins, in Metallogeny and Plate Tectonics, Strong, D.F., Eds., Geol. Ass. Can. Spec. Pap. 1976, vol. 14, pp. 59–100.

  47. Sillitoe, R.H., Ore-related breccias in volcanoplutonic arcs, Econ. Geol., 1985, vol. 80, no. 6, pp. 1467–1514.

    Article  Google Scholar 

  48. Smirnov, S.Z., The fluid regime o crystallization of water-saturated granitic and pegmatitic magmas: a physicochemical analysis, Russ. Geol. Geophys., 2015, vol. 56, no. 9, pp. 1292–1307.

    Article  ADS  Google Scholar 

  49. Smirnov S. Z., Peretyazhko I, pp., Prokof’ev V. Yu., Zagorskii V. E., Shebanin A. P. First find of sassoline (H3BO3) in fluid inclusions in minerals, Geol. Geofiz., 2000, vol. 41, no. 2, pp. 194-206.

    CAS  Google Scholar 

  50. Smirnov, S. Z., Tomas, V.G., Sokolova, E.N., and Kupriyanov, I.N., Experimental study of the leak-tightness of water-containing melt inclusions under the confining pressure of D2O at 650°C and 3 kbar, Russ. Geol. Geophys., 2011, vol. 52, no. 5, pp. 537–547.

    Article  ADS  Google Scholar 

  51. Smirnov, S.Z., Bortnikov, N.S., Gonevchuk, V.G., and Gorelikova, N.V., Melt compositions and fluid regime of crystallization of rare-metal granite and pegmatites from the Sn–W Tigrinoe Deposit (Primor’e), Dokl. Earth Sci., 2014, vol. 456, no. 1, pp. 558–562.

    Article  CAS  ADS  Google Scholar 

  52. Sokolova, E.N., Smirnov, S.Z., Astrelina, E.I., Annikova, I.Yu., Vladimirov, A.G., and Kotler, P.D., Ongonite-elvan magmas of the Kalguty ore-magmatic system (Gorny Altai): composition, fluid regime, and genesis, Russ. Geol. Geophys., 2011, vol. 52, no. 11, pp. 1378–1400.

    Article  ADS  Google Scholar 

  53. Sokolova, E.N., Smirnov, S.Z., and Khromykh, S.V., Conditions of crystallization, composition, and sources of rare-metal magmas forming ongonites in the Kalba–Narym Zone, Eastern Kazakhstan, Petrology, 2016, vol. 24, no. 2, pp. 153–177.

    Article  CAS  Google Scholar 

  54. Sosa, G., Oriolo, S., Kerkhof, A., Gonzalez, P.D., Olaizola, E., and Bechis, F., Ferropyrosmalite-bearing fluid inclusions in the north Patagonian Andes metasedimentary basement, Argentina: a record of regional metasomatism, Am. Mineral., 2021, vol. 106, no. (7), pp. 1172–1182.

  55. Thomas, R., Forster, H-J., and Heinrich, W., The behavior of boron in a peraluminous granite-pegmatite system and associated hydrothermal solutions: a melt and fluid-inclusion study, Contrib. Mineral. Petrol., 2003, vol. 144, pp. 457–472.

    Article  CAS  ADS  Google Scholar 

  56. Thomas, R., Davidson, P., and Schmidt, C., Extreme alkali bicarbonate- and carbonate-rich fluid inclusions in granite pegmatite from the Precambrian Ronne Granite, Bornholm Island, Denmark, Contrib. Mineral. Petrol., 2011, vol. 161, pp. 315–329.

    Article  CAS  ADS  Google Scholar 

  57. Thomas, R., Davidson, P., and Beurlen, H., The competing models for the origin and internal evolution of granitic pegmatites in the light of melt and fluid inclusion research, Mineral. Petrol., 2012, vol. 106, pp. 55–73.

    Article  CAS  ADS  Google Scholar 

  58. Webster, J., Exsolution of magmatic volatile phases from cl-enriched mineralizing granitic magmas and implications for ore metal transport, Geochim. Cosmochim Acta, 1997, vol. 61, no. 5, pp. 1017–1029.

    Article  CAS  ADS  Google Scholar 

  59. Wilson, G.A. and Eugster, H.P., Cassiterite solubility and tin speciation in supercritical chloride solutions, Geochem. Soc. Spec. Publ., 1990, vol. 2, pp. 179–195.

    Google Scholar 

  60. Wittenbrink, J., Lehmann, B., Wiedenbeck, M., Wallianos, A., Dietrich, A., and Palacios, C., Boron isotope composition of melt inclusions from porphyry systems of the Central Andes: a reconnaissance study, Terra Nova, 2009, vol. 21, no. 2, pp. 111–118.

    Article  CAS  ADS  Google Scholar 

  61. Zubkova, N.V., Pekov, I.V., Sereda, E.V., Yapaskurt, V.O., and Pushcharovsky, D.Y., The crystal structure of hibbingite, orthorhombic Fe2Cl(OH)3, Z. Kristall.–Crystal. Mater., 2019, vol. 234, pp. 379–382.

    CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We thank V.M. Ryabchenko for samples that were kindly placed at our disposal and S.G. Kryazhev (Central Research Institute of geological Prospecting for Base and Precious Metals. Moscow) for the chemical data of water leachates from quartz of the Vysokogorskoe deposit and valuable comments on the manuscript.

Funding

This study was supported by the Russian Federation (project no. 13.1902.21.0018) under the Ministry of Science and Higher Education (agreement no. 075-15-2020-802).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. N. Sokolova.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by I. Baksheev

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sokolova, E.N., Smirnov, S.Z., Sekisova, V.S. et al. Magmatic–Fluid System of the Vysokogorskoe Porphyry Tin Deposit (Sikhote-Alin, Kavalerovo Ore District, Primorsky Krai, Russia): a Magmatic Stage. Geol. Ore Deposits 65 (Suppl 1), S189–S208 (2023). https://doi.org/10.1134/S107570152307022X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S107570152307022X

Keywords:

Navigation