Log in

Geochemistry and P-T Conditions of Hydrothermal Fluids Associated with Porphyry, Metasomatic and Epithermal Ore Deposits at Oued Belif-Ain El Araar Magmatic Structure (North-African Alpine Orogeny, Tunisia)

  • Published:
Geology of Ore Deposits Aims and scope Submit manuscript

Abstract

Copper-rich deposits associated with magmatism at the Oued Belif -Ain El Araar area in North-western Tunisia fit into the geodynamic framework of the Tell-Rif orogenic belt of North Africa that extends westward to the Betic Cordilleras in Spain at the african and european plate boundary. The deposits have been considerably studied. However, the prevailing conditions of pressure, volume, temperature and composition (P-V-T-X) of the mineralizing fluids are still elusive. In this study, three types of fluid inclusions were distinguished for the mineralized facies: primary polyphase brine inclusions (Type I: liquid + vapor + halite + sylvite), primary sylvite (Type II-a: liquid + vapor + sylvite) and halite (Type II-b: liquid + vapor + halite) bearing inclusions and biphasic secondary vapor-rich and liquid-rich inclusions (Type III: liquid + vapor). Raman spectroscopy show that Type I and II a-b inclusions are in the CO2–H2O–NaCl–KCl, CO2–H2O–NaCl and CO2–H2O–KCl systems, whereas Type III pertains to the CO2–H2O system. Estimations of Pressure-Temperature fluid trap** conditions, for all mentioned inclusions, demonstrate a physicochemical fluid evolution from the highest temperature brine inclusions (Tt = 500°C; Pt = 980 bars), related to the porphyry phase, to the low temperature biphasic inclusions (Tt = 131°C; Pt = 221 bars) related the latest epithermal phase .The coexistence of liquid-rich and vapor-rich inclusions homogenizing at lower temperatures, confirms the establishment of boiling conditions responsible of Au–(Ag) enrichment in the last mineralizing phases. Comparable temperature conditions in similar magmatic related deposits are also mentioned in southern Spain (Rodalquilar gold mine, e.g., Arribas et al., 1995) where the mineralizing fluid temperatures mentioned vary from 175°C for epithermal deposits to more than 400°C for porphyry ones. The geochemical behavior of trace element indicates positive anomalies in mobile elements (hygromagmaphiles), those linked to Au, granitophiles (mainly W and Mo) and chalcophiles indicating a supply of metals of deep origin and mineralizing fluids with marked magmatic differentiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

REFERENCES

  1. Abidi, R., Slim-Shimi, N., Somarin, A., and Henchiri, M., Mineralogy and fluid inclusions study of carbonate-hosted Mississipi Valley type Ain Allega Pb–Zn–Sr–Ba ore deposit, Northern Tunisia, J. Afr. Earth Sci., 2010, vol. 57, pp. 262–272. https://doi.org/10.1016/j.jafrearsci.2009.08.006

    Article  Google Scholar 

  2. Albidon Limited, Exploration report, Develo** the East Africa nickel district, 2007. http://minesite.com/fileadmin/content/pdfs/Brokers_Notes_2/ALB_040507.pdf.

  3. Argani, A., Cornini, S., Torelli, L., and Zitellini, N., Neogene–Quaternary foredeep system in the strait of Sicily, Mem. Soc. Geol. Ital. 1986, vol. 36, pp. 123– 130

    Google Scholar 

  4. Argnani, A., The Strait of Sicily rift zone: foreland basin deformation related to the evolution of a back-arc basin, J. Geol., 1990, vol. 12, pp. 311–331. https://doi.org/10.1016/0264-3707(90)90028-S

    Article  Google Scholar 

  5. Arribas, A., Cunningham, C.G., Rytuba, J.J., Rye, R.O., Kelly, W.C., Podwysocki, M.H., McKee, E.H., and Tosdal, R.M., Geology, geochronology, fluid inclusions, and isotope geochemistry of the Rodalquilar gold alunite deposit, Spain, Econ. Geol., 1995, vol. 90, no. 4, pp. 795–822. https://doi.org/10.2113/gsecongeo.90.4.795

    Article  Google Scholar 

  6. Badgasarian, G.P., Bajanik, S., and Vass, D., Age radio-métrique du volcanisme néogène du Nord de la Tunisie, Not. Serv. Géol. Tunisie, 1972, vol. 40, pp. 79–85.

  7. Bakker, R., Package FLUIDS: 1. Computer programs for analysis of fluid inclusion data and for modelling bulk fluid properties, Chem. Geol. 2003, vol. 194, pp.3–23. https://doi.org/10.1016/S0009-2541(02)00268-1

    Article  Google Scholar 

  8. Bakker, R.J., Package FLUIDS. Part 4: thermodynamic modeling and purely empirical equations for H2O–NaCl–KCl solutions, Mineral. Petrol., 2012. https://doi.org/10.1007/s00710-012-0192-z

  9. Barnes, H.L., Solubility of ore minerals. In: Geochemistry of Hydrothermal Ore Deposits, Barnes, H.L., Ed., New York: John Wiley & Sons, 1979, pp. 404–460.

    Google Scholar 

  10. Ben Aïssa, L., Alouani, R., and Ben Aïssa, W., Tectono-magmatic events and genesis of Fe-Pb-Zn resources in Nefza area, NW Tunisia, Arab. J. Geosci., 2018, vol. 11, p. 608. ttps://doi.org/https://doi.org/10.1007/s12517-018-3910-y

  11. Ben Aïssa, W., Ben Aïssa, L., Ben Haj, Amara., Tlig, S., and Alouani, R., Ore deposits and epithermal evidences associated with intramagmatic faults at Aïn El Araâr-Oued Belif ring structure (NW Tunisia), Int. J. Earth Sci. (Geol. Rundsch.), 2017, vol. 106, pp.2653–2665. https://doi.org/10.1007/s00531-017-1451-3

    Article  Google Scholar 

  12. Ben Aissa, L., Ben Aissa, W., Ben Aissa, R., Alouani, R., and Ben Haj, Amara., Post-magmatic hydrothermal and metasomatic activity within associated skarn deposits: neoformation of iron-fluorphlogopite minerals first reported in NW Tunisia, Oued Belif area, Arab. J. Geosci., 2020, vol. 13, 300. https://doi.org/10.1007/s12517-020-5272-5

    Article  Google Scholar 

  13. Beji Sassi, A., Laridhi-Ouazaa, N., and Clocchiatti, R., Les inclusions vitreuses des ilménites, apatites et quartz des sédiments phosphatés de Tunisie: témoignages d’un volcanisme alcalin d’âge paléocène supérieur à Éocène, Bull. Soc. Géol. France, 1996, vol. 167, no. 2, pp. 227–234.

    Google Scholar 

  14. Boccaletti, M. and Guazzone, G., Remnant arcs and marginal basins in the Cenozoic development of the Mediterranean, Nature, 1974, vol. 252, pp. 18–21. https://doi.org/10.1038/252018a0

    Article  Google Scholar 

  15. Bodnar, R.J., Revised equation and table for determining the freezing point depression of H2O–NaCl solutions, Geochim. Cosmochim. Acta, 1993, vol. 57, pp. 683–684. https://doi.org/10.1016/0016-7037(93)90378-A

    Article  Google Scholar 

  16. Borisenko, A.S., Study of the salt composition of solutions in gas-liquid inclusions in minerals by the cryometric method, Soviet Geology and Geophysics, 1977, vol. 18, pp. 11–19

    Google Scholar 

  17. Burke, E.A.J., Raman microspectrometry of fluid inclusions, Lithos, 2001, vol. 55, pp. 139–158. https://doi.org/10.1016/S0024-4937(00)00043-8

    Article  Google Scholar 

  18. Candela, P.A. and Piccoli, P.M., Model ore-metal partitioning from melts into vapor and vapor/brine mixtures, Mineral. Ass. Canada, Short Course Ser., 1995, vol. 23, pp. 101–127

    Google Scholar 

  19. Cline, J. and Bodnar, R.J., Direct evolution of brine from a crystallizing silicic melt at the Questa, New Mexico, Molybdenum deposit, Econ. Geol., 1994, vol. 89, pp. 1780–1802

    Article  Google Scholar 

  20. Cline, J.S., Genesis of porphyry copper deposits: The behavior of water, chloride, and copper in crystallizing melts, Arizona Geological Society Digest, 1995, vol. 20, pp. 69–82

    Google Scholar 

  21. Clochiatti, R. and El Ghozzi, T., Les inclusions à dépôts salins des cristaux de quartz de la granodiorite quartzique de l’Oued Bélif (groupe volcanique de Nefza, Tunisie septentrionale), CR. Acad. Sci. Paris, 1977, p. 284.

    Google Scholar 

  22. Cohen, C.R., Schamel, S., and Boyd-Kaygi, P., Neogene deformation in Northern Tunisia: origin of the Eastern Atlas by microplate continental margin collision, Geol. Soc. Am. Bull., 1980, vol. 91, no. 4, pp. 225–237.

    Article  Google Scholar 

  23. Colleuil, B., Etude Stratigraphique et Néotectonique des Dormations Néogenes et Quaternaires de la Région de Nabeul-Hammamet (Cap-Bon Tunisia), Mem. D.E.S. Univ., Nice, France, 1976.

    Google Scholar 

  24. Crampon, N., Etude Géologique de la Bordure des Mogods du Pays de Bizerte et du Nord des Hédils (Tunisie septentrionale), PhD thesis, Nancy 1-University, 1971.

  25. Crawford, M.L., Phase equilibria in aqueous fluid inclusions. In Fluid Inclusions: Applications to Petrology, (Hollister, L.S., and Crawford, M.L., Eds., Mineral. Assoc. Can., Short Course Handbook, 1981, vol. 6, pp. 75–100.

    Google Scholar 

  26. Decrée, S., De Putter, Th., and Baele, J.M., The Oued Belif hematiterich breccia: a Miocene iron oxide Cu–Au (U–REE) deposit in the Nefza Mining District, Tunisia, Econ. Geol., 2013, vol. 108, pp.1425–1457. https://doi.org/10.2113/econgeo.108.6.1425

    Article  Google Scholar 

  27. De Vivo, B. and Frezzotti, M.L., Evidence for magmatic immiscibility in italian subvolcanic systems. In: Fluid Inclusions in Minerals: Methods and Applications, Blacksburg: Virginia Tech (VT), 1994, pp. 345–362.

    Google Scholar 

  28. Dewey, J.E., Helman, M.L., Turco, E., Hutton, D.H.W., Knott, D., Kinematics of the western Mediterranean, In: Alpine Tectonics, Coward, M.P, Dietrich, D., and Park, R.G., Eds., Geol. Soc. Spec. Publ., 1989, vol. 45, pp. 265–284. https://doi.org/10.1144/GSL.SP.1989.045.01.15.

  29. Dilles, J.H., Solomon, G.C., Taylor, Jr., H.P., and Einaudi, M.T., Oxygen and hydrogen isotopic characteristics of hydrothermal alteration at the Ann-Mason porphyry copper deposit, Yerington, Nevada, Econ. Geol., 1992, vol. 87, pp. 44–63.

    Article  Google Scholar 

  30. Durand-Delga, M., Méditerranée occidentale, étapes de sa genèse et problèmes structuraux liés à celle-ci, Mém. Soc. Géol. Fr., 1980, vol. 10, pp. 203–224.

    Google Scholar 

  31. Faul, H. and Foland, K., L'âge des rhyodacites de Nefza-Sedjenane, Notes du Service Géologique de Tunisie n°46. Trav. Géol. Tunis. 1980, vol. 14, pp. 47–49.

    Google Scholar 

  32. Frezzotti, M.L., Tecce, F., and Casagli, A., Raman spectroscopy for fluid inclusion analysis, J. Geochem. Explor., 2012, vol. 112, pp. 1–20. https://doi.org/10.1016/j.gexplo.2011.09.009

    Article  Google Scholar 

  33. Gottis, C. and Sainfeld, P., Les gites métallifères tunisiens, XIX éme Congrés Géologique International, Monographies régionales, 1952, 2e sér., Tunisie. N° 2, p. 104. https://www.sudoc.fr/025353640

  34. Harris, A.C. and Golding, S.D., New evidence of magmatic-fluid related phyllic alteration: implications for the genesis of porphyry copper deposits, Geology, 2002, vol. 30, pp. 335–338. https://doi.org/10.1130/0091-7613(2002)030<0335:NEO-MFR>2.0.CO;2

    Article  Google Scholar 

  35. Harris, A.H., Golding, S.D., and White, N.C., Bajo de la Alumbrera copper–gold deposit: stable isotope evidence for a porphyry-related hydrothermal system dominated by magmatic aqueous fluids, Econ. Geol., 2005, vol. 100, pp. 863–886. https://doi.org/10.2113/gsecongeo.100.5.863

    Article  Google Scholar 

  36. Henley, R.W. and McNabb, A., Magmatic vapor plumes and groundwater interaction in porphyry copper emplacement, Econ. Geol., 1978, vol. 73, pp. 1–20. https://doi.org/10.2113/gsecongeo.73.1.1

    Article  Google Scholar 

  37. Hezarkhani, A. and Williams-Jones, A., Controls of alteration and mineralization in the Sungun porphyry copper deposit, Iran: evidence from fluid inclusion and stable isotope, Econ. Geol., 1998, vol. 93, pp. 651–670. https://doi.org/10.2113/gsecongeo.93.5.651

    Article  Google Scholar 

  38. Hezarkhani, A., Williams-Jones, A.E., and Gammons, C.H., Factors controlling copper solubility and chalcopyrite deposition in the Sungun porphyry copper deposit, Iran, Miner. Deposita, 1999, vol. 34, pp. 770–783. https://doi.org/10.1007/s001260050237

    Article  Google Scholar 

  39. Hou, Z.Q., Ma, H.W., Zaw, K., Zhang, Y.Q., Wang, M.J., Wang, Z., Pan, G.T., and Tang, R., The Himalayan Yulong porphyry copper belt: product of large-scale strike-slip faulting in Eastern Tibet, Econ. Geol., 2003, vol. 98, pp. 125–145. https://doi.org/10.2113/98.1.125

    Article  Google Scholar 

  40. Jallouli, C., Mickusk, K., Turki, M.N., and Rihane, C., Gravity and aeromagnetic constraints on the extent of Cenozoic rocks within the Nefza–Tabarka region, northwestern Tunisia, J. Volcanol. Geotherm. Res., 2003, vol. 122, pp. 51–68. https://doi.org/10.1016/S0377-0273(02)00469-9

    Article  Google Scholar 

  41. Kilinc, I.A. and Burnham, C.W., Partitioning of chloride between a silicate melt and coexisting aqueous phase from 2 to 8 kilobars, Econ. Geol., 1972, vol. 67, pp. 231–235. https://doi.org/10.2113/gsecongeo.67.2.231

    Article  Google Scholar 

  42. Linke, W.F., Solubilities, Inorganic and Metal Organic Compounds: a Compilation of Solubility Data from the Periodical Literature, Princeton: Van Nostrand, 1958.

    Google Scholar 

  43. Lowenstern, J.B., Dissolved volatile concentrations in an ore-forming magma, Geology, 1994, vol. 22, pp. 893-896. https://doi.org/10.1130/0091-7613(1994)022<0893:DVCI-AO>2.3.CO;2

    Article  Google Scholar 

  44. Lyubetskaya, T. and Korenaya, J., Chemical composition of earth’s primitive mantle and its variance: 1. Methods and results, J. Geophys. Res., Solid Earth, 2007, vol. 112, no. B3, pp. 1–21. https://doi.org/10.1029/2005JB004223

    Article  Google Scholar 

  45. Mauduit, F., Le Volcanisme Neogene de la Tunisie Continentale, Unpublished Thesis, Paris: Universite de Paris Sud, 1978.

  46. Negra, L., Pétrologie, minéralogie et géochimie des minéralisations et des roches encaissantes des bassins associés aux structures tectoniques et magmatiques de l’Oued Bélif et du Jebel Hedada (nord des Nefza, Tunisie septentrionale). Thèse, Paris : Univ. Paris-Sud, Orsay, 1987, http://www.theses.fr/1987PA112253

  47. Philip, H., Andrieux, J., Dlala, M., Chihi, L., and Ben Ayed, N., Evolution tectonique mioplioquaternaire du fossé de Kasserine (Tunisie centrale): implications sur l’evolution géodynamique recente de la Tunisie, Bull. Scoc. Geol. France, 1986, vol. 4, pp. 559–568. https://doi.org/10.2113/gssgfbull.ii.4.559

    Article  Google Scholar 

  48. Sanger-von Oepen, P., Frieflrich, G., and Vogt, J.H., Fluid evolution, wallrock alteration and ore mineralization associated with the Rodalquilar epithermal gold-deposit in southeast Spain, Miner. Deposita, 1989, vol. 24, pp. 235–243. https://doi.org/10.1007/BF00206385

    Article  Google Scholar 

  49. Quan, R.A., Cloke, P.L., and Kesler, S.E., Chemical analyses of halite trend inclusions from the Granite porphyry copper deposit, British Columbia, Econ. Geol., 1987, vol. 82, pp. 1912–1930

    Article  Google Scholar 

  50. Rehault, J.P., Boillot, G., and Mauffret, A., The western Mediterranean basin geological evolution. Mar. Geol., 1984, vol. 55, pp. 447–477. https://doi.org/10.1016/0025-3227(84)90081-1

    Article  Google Scholar 

  51. Reynolds, T.J. and Beane, R.E., Evolution of hydrothermal fluid characteristics at the Santa Rita, New Mexico, porphyry copper deposit, Econ. Geol., 1985, vol. 80, pp. 1328–1347. https://doi.org/10.2113/GSECONGEO.80.5.1328

    Article  Google Scholar 

  52. Roedder, E., Fluid Inclusions, Rev. Mineral., 1984, vol. 12

  53. Ronald, J., Bakker, Package FLUIDS 1. Computer programs for analysis of fluid inclusion data and for modelling bulk fluid properties, Chem. Geol., 2003, vol. 194, 3– 23. https://doi.org/10.1016/S0009-2541(02)00268-1

    Article  Google Scholar 

  54. Rouvier, H., Carte Géologique de la Tunisie, Feuille n°10 (Nefza-1/50000), Tunisian Office for Topography and Cartographie, 1987.

    Google Scholar 

  55. Rytuba, J.J., Arribas, A.Jr., Cunningham, C.G., Mckee, E.H., Podwysocki, M.H., Smith, J.G., Kelly, W.C., and Arribas, A., Mineralized and unmineralized calderas in Spain; Part II, evolution of the Rodalquilar caldera complex and associated gold-alunite deposit, Miner. Deposita, 1990, vol. 25 (Suppl.): S29–S35. https://doi.org/10.1007/BF00205247

    Article  Google Scholar 

  56. Slim-Shimi, N., Tlig, S., and Zargouni, F., Nature, origine et évolution des fluides dans le district minier de la caldeira d’Oued Bélif (Nefza, Tunisie septentrionale), CR Acad Sci., 1999, vol. 328, pp. 153–160. https://doi.org/10.1016/S1251-8050(99)80090-1

    Article  Google Scholar 

  57. Sterner, S.M., Hall, D.L., and Bodnar, R.J., Synthetic fluid inclusions. V. Solubility relations in the system NaCl–KCl–H2O under vapor-saturated conditions, Geochim. Cosmochim. Acta, 1988, vol. 52, no. 5, pp. 989–1005. https://doi.org/10.1016/0016-7037(88)90254-2

  58. Talbi, F., Jaafari, M., and Tlig, S., Magmatisme néogène de la Tunisie septentrionale : pétrogenèse et événements géodynamiques, Rev. Soc. Geol. Espania, 2005, vol. 18, pp. 241–252.

  59. Tlig, S., Erraoui, L., Ben Aissa, L., Alouani, R., and Tagorti, M.A., Tectogenèses alpine et atlasique : deux événements distincts dans l’histoire géologique de la Tunisie Corrélation avec les événements clés en Méditerranee, Compt. Rend. l’Acad. Sci. Paris, 1991, vol. 312 (Sér. II), pp. 295–301.

  60. Ulrich, T. and Heinrich, C.A., Geology and alteration geochemistry of the porphyry Cu–Au deposit at Bajo de la Alumbrera, Argentina, Econ. Geol., 2001, vol. 96, pp. 1719–1742. https://doi.org/10.2113/gsecongeo.97.8.1865

    Article  Google Scholar 

  61. Ulrich, T., Günthur, D., and Heinrich, C.A., The evolution of a porphyry Cu-Au deposit, based on LA-ICP-MS analysis of fluid inclusions: Bajo de la Alumbrera, Argentina, Econ. Geol., 2001, p. 96, pp. 1743–1774. https://doi.org/10.2113/gsecongeo.97.8.1889

  62. Vitale, S., Ciarcia, S., and Tramparulo, F.D., 'A., Deformation and stratigraphic evolution of the Ligurian Accretionary Complex in the southern Apennines (Italy), J. Geodynam., 2013, vol. 66, pp. 120–133. https://doi.org/10.1016/j.jog.2013.02.008

    Article  Google Scholar 

  63. Winnock, E., Les fosses du chenal de Sicile. La Mer Pélagienne, Geol. Mediterr., 1979, vol. 6, no. 1, pp. 35–40.

    Google Scholar 

  64. Zhang, Y.G. and Frantz, J.D., Determination of the homogenization temperatures and densities of supercritical fluids in the system NaCl–KCl–CaCl2–H2O using synthetic fluid inclusions, Chem. Geol., 1987, vol. 64, pp. 335–350. https://doi.org/10.1016/0009-2541(87)90012-X

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

This article is released within the framework of the scientific cooperation between the University of Carthage (Tunisia) and the University of Claude Bernard Lyon 1 (France). We would like to thank the Research Unit of Physics of Lamellar Materials and Hybrid Nanomaterials of the Faculty of Sciences of Bizerta for the financing of the geochemical and Raman analyzes and the Geology Laboratory of Lyon for the assistance of the microthermometric measurements.

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ben Aissa Wiem.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ben Aissa Wiem, Véronique, G., Ben Aissa Rania et al. Geochemistry and P-T Conditions of Hydrothermal Fluids Associated with Porphyry, Metasomatic and Epithermal Ore Deposits at Oued Belif-Ain El Araar Magmatic Structure (North-African Alpine Orogeny, Tunisia). Geol. Ore Deposits 65, 625–643 (2023). https://doi.org/10.1134/S1075701523060028

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1075701523060028

Keywords:

Navigation