Log in

Monticellite–Spurrite Symplectites: Evidence for a Regressive Stage of the Kochumdek Trap Contact Aureole (Krasnoyarsk Region)

  • MINERALS AND MINERAL PARAGENESES
  • Published:
Geology of Ore Deposits Aims and scope Submit manuscript

Abstract

We study merwinite and products of its retrograde exsolution (monticellite and spurrite) from marbles of a contact metamorphic aureole in the Kochumdek River area (East Siberia). Cooling to 820–880°C (at P ≈ 0.2 kbar and \({{f}_{{{\text{C}}{{{\text{O}}}_{2}}}}} \gg {{f}_{{{{{\text{H}}}_{{\text{2}}}}{\text{O}}}}}\)) has led to pseudomorphic replacement of merwinite by monticellite-spurrite symplectites. Calculations show that most of the components (Ca, Mg, Mn, Fe, and C) are mobile in the reaction of merwinite exsolution while Si is inert. The inert behavior of silicon controls the process of replacement and restricts it to a few local sites. The formation of the monticellite-spurrite symplectites was maintained by the own resources of metacarbonates. Later, limited amounts of the monticellite-spurrite symplectites formed due to fluorine inputs, possibly, from the cooling intrusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. Azimov, P.Ya., Crystal growth in continuum (metamorphic and metasomatic rocks), Tez. Dokl. Fedorovskoi Sessii, (Proc. Fedorov Conference), St. Petersburg, 2006, pp. 29–30.

  2. Buick, I.S., Gibson, R., Wallmach, T., and Metz, J., The occurrence of cuspidine, foshagite and hillebrandite in calc-silicate xenoliths from the Bushveld Complex, South Africa, S. Afr. J. Geol., 2000, vol. 103, pp. 249–254.

    Article  Google Scholar 

  3. Devyatiiarova, A.S., Merwinite from high-temperature marbles of contact aureole on the Kochumdek River, Vopr. Estestvoznan., 2018, vol. 1, no. 15, pp. 70–77.

    Google Scholar 

  4. Gaidies, F., Milke, R., Heinrich, W., Abart, R., and Heinrich, W., Metamorphic mineral reactions: Porphyroblast, corona and symplectite growth, EMU Notes in Mineralogy, 2017, vol. 16, no. 14, pp. 469–540.

    Google Scholar 

  5. Golovin, A.V., Goryainov, S.V., Kokh, S.N., Sharygin, I.S., Rashchenko, S.V., Kokh, K.A., Devyatiiarova, A.S., and Sokol, E.V., The application of Raman spectroscopy to djerfisherite identification, J. Raman Spectroscop., 2017, vol. 48, no. 11, pp. 1574–1582.

    Article  Google Scholar 

  6. Grapes, R., Pyrometamorphism, Berlin: Springer, 2011.

    Google Scholar 

  7. Gross, Sh., The mineralogy of the Hatrurim Formation, Israel, Geol. Surv. Isr. Bull., 1970, vol. 70, pp. 1–80.

    Google Scholar 

  8. Henry, D.A., Cuspidine-bearing skarn form Chesney Vale, Victoria, Austral. J. Earth Sci., 1999, vol. 46, pp. 251–260.

    Article  Google Scholar 

  9. Jamtveit, B., Dahlgren, S., and Austrheim, H., High-grade contact metamorphism of calcareous rocks from the Oslo: Rift, southern Norway, Am. Mineral., 1997, vol. 82, pp. 1241–1254.

    Article  Google Scholar 

  10. Obata, M., Kelyphite and symplectite: textural and mineralogical diversities and universality, and a new dynamic view of their structural formation. In: New Frontiers in Tectonic Research—General Problems, Sedimentary Basins, and Island Arcs, InTech, 2011, pp. 93–122.

  11. Owens, B.E. and Kremser, D.T., Akermanite breakdown to a cuspidine-bearing symplectite in a calc-silicate xenolith, Kiglapait intrusion, Labrador, Canada, Can. Mineral., 2010, vol. 48, no. 4, pp. 809–819.

    Article  Google Scholar 

  12. Pertsev, N.N.,Vysokotemperatyrnyi metamorfizmi metasomatizm karbonatmykh porod (High-Temperature Metamorphism and Metasomatism of Carbonate Rocks), Moscow: Nauka, 1977.

    Google Scholar 

  13. Remmert, P., Heinrich, W., Wunder, B., Morales, L., Wirth, R., Rhede, D., and Abart, R., Synthesis of monticellite–forsterite and merwinite–forsterite symplectites in the CaO–MgO–SiO2 model system: influence of temperature and water content on microstructure evolution, Contrib. Mineral. Petrol., 2018, vol. 173, no. 1, p 5.

    Article  Google Scholar 

  14. Reverdatto, V.V., High-temperature contact metamorphism of limestone in the Podkamennaya Tunguska basin, Dokl. Akad. Nauk SSSR, 1964, vol. 155, no. 1, pp. 104–107.

    Google Scholar 

  15. Reverdatto, V.V., Fatsii kontaktovogo metamorfizma (Facies of Contact Metamorphism), Moscow: Nedra, 1970.

  16. Sharygin, V.V., Stoppa, F., and Kolesov, B.A., Cuspidine in melilitolites of San Venanzo, Italy, Dokl. Earth Sci., 1996, vol. 349, no. 5, pp. 747–751.

    Google Scholar 

  17. Sibelev, O.S., Decompression symplectites in apoeclogites of the Grida melange zone (Belomorian orogen), Geol. Polezn. Iskop. Karelii, 2010, vol. 13, pp. 66–72.

    Google Scholar 

  18. Sokol, E.V., Kokh, S.N., Sharygin, V.V., Danilovsky, V.A., Seryotkin, Yu.V., Liferovich, R., Deviatiiarova, A.S., Nigmatulina, E.N., and Karmanov, N.S., Mineralogical diversity of Ca2SiO4-bearing combustion metamorphic rocks in the Hatrurim Basin: Implications for storage and partitioning of elements in Oil Shale Clinkering, Minerals, 2019a, vol. 9, no. 8, pp. 465.

    Article  Google Scholar 

  19. Sokol, E.V., Polyansky, O.P., Semenov, A.N., Reverdatto, V.V., Kokh, S.N., Devyatiiarova, A.S., Kolobov, V.Y., Khvorov, P.V., and Babichev, A.V., High-grade contact metamorphism in the Kochumdek River valley (Podkamennaya Tunguska basin, East Siberia): evidence for magma flow, Russ. Geol. Geophys., 2019b, vol. 60, no. 4, pp. 386–399.

    Article  Google Scholar 

  20. Sokol, E.V., Deviatiiarova, A.S., Kokh, S.N., Reverdatto, V.V., Artemyev, D.A., and Kolobov, V.Yu., Sulfide mineralization hosted by spurrite–mervinite marbles (Kochumdek River, East Siberia), Dokl. Earth Sci., 2019c, vol. 489, no. 2, pp. 1326–1329.

    Article  Google Scholar 

  21. Sokol, E.V., Kokh, S.N., Seryotkin, Y.V., Deviatiiarova, A.S., Goryainov, S.V., Sharygin, V.V., Khoury, H.N., Karmanov, N.S., Danilovsky, V.A., and Artemyev, D.A., Ultrahigh-temperature sphalerite from Zn–Cd–Se-rich combustion metamorphic marbles, Daba complex, Central Jordan: paragenesis, chemistry, and structure, Minerals, 2020, vol. 10, no. 9, p. 822.

    Article  Google Scholar 

  22. Sokol, E.V., Deviatiiarova, A.S., Kokh, S.N., Reutsky, V.N., Abersteiner, A., Philippova, K.A., and Artemyev, D.A., Sulfide minerals as potential tracers of isochemical processes in contact metamorphism: case study of the Kochumdek aureole, East Siberia, Minerals, 2021, vol. 11, no. 1, p. 17.

    Article  Google Scholar 

  23. Wallmach, T., Hatton, C.J., De Waal, S.A., and Gibson, R.L., Retrogressive hydration of calc-silicate xenoliths in the eastern Bushveld Complex: evidence for late magmatic f luid movement, J. Afr. Earth Sci., 1995, vol. 21, no. 4, pp. 633–646.

    Article  Google Scholar 

  24. Whitney, D.L. and Evans, B.W., Abbreviations for names of rock-forming minerals, Am. Mineral., 2010, vol. 95, no. 1, pp. 185–187.

Download references

ACKNOWLEDGMENTS

We are sincerely grateful to Academician V.V. Reverdatto and PhD V.Yu. Kolobov for sample collection provided and consultations and an anonymous reviewer for a friendly review of the manuscript and constructive suggestions on its improvement. We thank the Secretary of the Editorial Board of the Journal Proceedings of the Russian Mineralogical Society, PhD D.A. Petrov for help and coordination of activity. We acknowledge colleagues from the Analytical Center of the IGM SB RAS PhD E.N. Nigmatulina and M.V. Khlestov for analytical support of studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Deviatiiarova.

Ethics declarations

This study was supported by state contract of the IGM SB RAS and Russian Foundation for Basic Research, project no. 20-35-90008.

Additional information

Translated by I. Melekestseva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deviatiiarova, A.S., Sokol, E.V., Kokh, S.N. et al. Monticellite–Spurrite Symplectites: Evidence for a Regressive Stage of the Kochumdek Trap Contact Aureole (Krasnoyarsk Region). Geol. Ore Deposits 64, 584–597 (2022). https://doi.org/10.1134/S1075701522080049

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1075701522080049

Keywords:

Navigation