Log in

Sources and Evolution of Sulfur Isotopic Composition of Sulfides of the Kharaelakh and Pyasino–Vologochan Intrusions, Norilsk Ore Region

  • Published:
Geology of Ore Deposits Aims and scope Submit manuscript

Abstract—

The paper discusses a problem of the source of sulfide sulfur in economic ore-bearing intrusions of the Norilsk type and less ore-bearing (subeconomic resources) intrusions of the Zub type of the Norilsk Complex. The data of previous studies indicate the relatively homogenous S isotopic composition of ore-bearing intrusions with a general enrichment in heavy (34S) isotope, which was considered one of favorable searching criteria for rich mineralization. The representative volume of new data on S isotopic composition of sulfides of the Kharaelakh intrusion showed that the sulfide liquid of disseminated and massive ores underwent progressive enrichment in 34S isotope from root–rear parts to the intrusion front. This trend contradicts models that suggest a primary heavy S isotopic composition of a deep source. Our genetic model envisages the decomposition of sulfates in an intrusion aureole, reduction of sulfate sulfur by hydrocarbons, and further assimilation of hydrogen sulfide by magma. This model serves for identifying the patterns of the distribution of orebodies within the deposits and directions of further exploration in the region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

Notes

  1. Hereinafter, “u” means unpublished reports, a list of which is enclosed.

REFERENCES

  1. Ariskin, A.A., Pshenitsyn, I.V., Dubinina, E.O., Kossova, S.A., and Sobolev, S. N., Sulfur isotope composition of olivine gabbronorites from a mineralized apophysis of the Yoko-Dovyren Intrusion, Northern Transbaikalia, Russia, Petrology, 2021, vol. 29, no. 6, pp. 597–613.

    Article  Google Scholar 

  2. Barnes, S.J., Malitch, K.N., and Yudovskaya, M.A., Introduction to a special issue on the Norilsk–Talnakh Ni–Cu–platinum group element deposits, Econ. Geol., 2020, vol. 115, pp. 1157–1172.

    Article  Google Scholar 

  3. Campbell, I.H., Naldrett, A.J., and Barnes, S.J., A model for the origin of the platinum-rich sulfide horizons in the Bushveld and Stillwater complexes, J. Petrol., 1983, vol. 24, pp. 133–165.

    Article  Google Scholar 

  4. Czamanske, G.K., Zeniko, T.E., Fedorenko, V.A., Calk, L.C., Budahn, J.R., Bullock, J.H.,Jr., Fries, T.L., King, B-S.W., and Siems, D.F., Petrographic and geochemical characterization of ore-bearing intrusions of the Noril’sk type, Siberia: with discussion of their origin, Res. Geol. Spec. Iss., 1995, no. 18, pp. 1–48.

  5. Dyuzhikov, O.A., Distler, V.V., Strunin, B.M., et al., Geologiya i rudonosnost' Noril’skogo raiona (Geology and Ore Potential of the Norilsk District), Moscow: Nedra, 1988.

  6. Fiege, A., Holtz, F., Shimizu, N., Mandeville, C.W., Behrens, H., and Knip**, J.L., Sulfur isotope fractionation between fluid and andesitic melt: an experimental study, Geochim. Cosmochim. Acta, 2014, vol. 142, pp. 501–521. https://doi.org/10.1016/j.gca.2014.07.015

    Article  Google Scholar 

  7. Fiege, A., Holtz, F., Behrens, H., Mandeville, C.W., Shimizu, N., and Crede, L.S., Experimental investigation of the S and S-isotope distribution between H2O–S ± Cl fluids and basaltic melts during decompression, Chem. Geol., 2015, vol. 393–394, pp. 36–54. https://doi.org/10.1016/j.chemgeo.2014.11.012

    Article  Google Scholar 

  8. Godlevskii, M.N., Trappy i rudonosnye intruzii Noril’skogo raiona (Traps and Ore-Bearing Intrusions of the Norilsk District), Moscow: Gosgeoltekhizdat, 1959.

  9. Godlevskii, M.N. and Grinenko, L.N., Some sulfur isotope data in sulfides from the Norilsk deposit, Geokhimiya, 1963, no. 1, pp. 35–39.

  10. Gorbachev, N.I. and Grinenko, L.N., Isotope composition of sulfides and sulfates of the Oktyabr’skoe copper–nickel deposit (Norilsk district) and some problems of its genesis,” Geokhimiya, 1973, no. 8, pp. 1127–1136.

  11. Grinenko, L.N., Genetic model of the formation of sulfide copper–nickel deposits based on isotope-geochemical data, Postroenie modelei rudoobrazuyushchikh sistem (Construction of Models of Ore-Forming Systems), Sotnikov, V.I., Eds., Novosibirsk: Nauka, 1987, pp. 119–128.

    Google Scholar 

  12. Grinenko, L.N. and Stepanov, V.K., Isotope relations and sulfur contents in differentiated intrusions of the Imangda ore cluster, Geokhimiya, 1985, no. 11, pp. 1406–1416.

  13. Grinenko, L.N., Sources of sulfur of the nickeliferous and barren gabbro-dolerite intrusions of the northwest Siberian platform, Int. Geol. Rev., 1985, vol. 28, pp. 695–708.

    Article  Google Scholar 

  14. Iacono-Marziano, G., Ferraina, C., Gaillard, F., Di Carlo, I., and Arndt, N.T., Assimilation of sulfate and carbonaceous rocks: experimental study, thermodynamic modeling and application to the Noril’sk–Talnakh region (Russia), Ore Geol. Rev, 2017, vol. 89, pp. 399–413.

    Article  Google Scholar 

  15. Ignatiev, A.V., Velivetskaya, T.A., Budnitskiy, S.Y., Yakovenko, V.V., Vysotskiy, S.V., and Levitskii, V.I., Precision analysis of multisulfur isotopes in sulfides by femtosecond laser ablation GC-IRMS at high spatial resolution, Chem. Geol., 2018, vol. 493, pp. 316–326.

    Article  Google Scholar 

  16. Izotopnaya geologiya noril’skikh mestorozhdenii (Isotope Geology of the Norilsk Deposits), Petrov, O.V., Eds., St. Petersburg: VSEGEI, 2017.

    Google Scholar 

  17. Jiang, L., Worden, R.H., and Cai, C., Generation of isotopically and compositionally distinct water during thermochemical sulfate reduction (TSR) in carbonate reservoirs: Triassic Feixianguan Formation, Sichuan Basin, China, Geochim. Cosmochim. Acta, 2015, vol. 165, pp. 249–262.

    Article  Google Scholar 

  18. Kovalenker, V.A., Gladyshev, G.D., and Nosik, L.P., Sulfur isotope composition of sulfides from deposits of the Talnakh ore cluster in relation with their selenium potential,” Izv. Akad. Nauk SSSR, Ser. Geol., 1974, no. 2, pp. 80–91.

  19. Krivolutskaya N.A. Mantle Origin of Heavy Isotopes of Sulfur in Ores of the Noril’sk Deposits, Dokl. Earth Sci., 2014a, vol. 454, no. 3, pp. 76–78.

    Article  Google Scholar 

  20. Krivolutskaya, N.A., Evolyutsiya trappovogo magmatizma i Pt-Cu-Ni rudoobrazovanie v Noril’skom raione (Evolution of Trap Magmatism and Pt–Cu–Ni Ore Formation in the Norilsk District), Moscow: Tovarishchestvo nauchnykh izdanii KMK, 2014b.

  21. Krouse, H.R., Sulphur isotopes in our environment, Isotope Geochemistry. Vol. 1. The Terrestrial Environment, Fritz, P., Fontes, J.Ch., Eds., Amsterdam: Elsevier, 1980, pp. 435–471.

  22. Lesher, C.M., Roles of xenomelts, xenoliths, xenocrysts, xenovolatiles, residues, and skarns in the genesis, transport, and localization of magmatic Fe–Ni–Cu–PGE sulfides and chromite, Ore Geol. Rev., 2017, vol. 90, pp. 465–484.

    Article  Google Scholar 

  23. Lesher, C.M. and Burnham, O.M., Multicomponent elemental and isotopic mixing in Ni–Cu–(PGE) ores at Kambalda, Western Australia, Can. Mineral., 2001, vol. 39, pp. 421–446.

    Article  Google Scholar 

  24. Li, C., Ripley, E.M., and Naldrett, A.J., Compositional variations of olivine and sulfur isotopes in the Noril’sk and Talnakh intrusions, Siberia: implications for ore-forming processes in dynamic magma conduits, Econ. Geol., 2003, vol. 98, pp. 69–86.

    Google Scholar 

  25. Li, C., Ripley, E.M., and Naldrett, A.J., A new genetic model for the giant Ni–Cu–PGE sulfide deposits associated with the Siberian flood basalts, Econ. Geol., 2009a, vol. 104, no. 2, pp. 291-–301. https://doi.org/10.2113/gsecongeo.104.2.291

    Article  Google Scholar 

  26. Li, C., Naldrett, A.J., Shmitt, A.K., et al., Magmatic anhydrite–sulfide assemblages in plumbing system of the siberian traps, Geology, 2009b, vol. 37, pp. 259–262. https://doi.org/10.1130/G25355A.1

    Article  Google Scholar 

  27. Li, Y.B. and Liu, J.M., Calculation of sulfur isotope fractionation in sulfides, Geochim. Cosmochim. Acta, 2006, vol. 70, pp. 1789–1795.

    Article  Google Scholar 

  28. Likhachev, A.P., Platino-medno-nikelevye i platinovye mestorozhdeniya (Platinum–Copper–Nickel and Platinum Deposits), Moscow: Eslan, 2006.

  29. Likhachev, A.P., Ore-bearing intrusions of the Noril’sk region, Proc. Sudbury–Noril’sk Symp. Ontario Geol. Survey, 1994, vol. 5, pp. 185–201.

    Google Scholar 

  30. Likhachev, A.P., Platinum–copper–nickel and platinum deposits: mechanisms of accumulation, new sources, and methods of obtaining ore matters, Rudy Met., 2002, no. 5, pp. 9–22.

  31. Likhachev, A.P., Possibility of self-enrichment of ore matters and heavy sulfur isotope (34S) of mantle magmas that form platinum–copper–nickel deposits and promising place for ore localization in the Norilsk district, Otechestvennaya Geol., 2019, no. 3, pp. 32–49.

  32. Malitch, K.N., Badanina, I.Yu., and Tuganova, E.V., Rudonosnye ul’tramafit–mafitovye intruzivy Polyarnoi Sibiri: vozrast, usloviya obrazovaniya, kriterii prognoza (Ore-Bearing Ultramafic–Mafic Intrusions of the Polar Siberia: Age, Conditions of Formation, and Prediction Criteria), Yekaterinburg. IGG UrO RAN. 2018. 287 s.

  33. Malitch, K.N., Latypov, R.M., Badanina, I.Yu., and Sluzhenikin, S.F., Insights into ore genesis of Ni–Cu–PGE sulfide deposits of the Noril’sk province (Russia): evidence from copper and sulfur isotopes, Lithos, 2014, vol. 204, pp. 172–187.

    Article  Google Scholar 

  34. Naldrett, A.J., Lightfoot, P.C., Fedorenko, V.A., Gorbachev, N.S., and Doherty, W., Geology and geochemistry of intrusions and flood basalts of the Noril’sk region, USSR, with implication to the origin of the Ni–Cu ores, Econ. Geol., 1992, vol. 87, pp. 975–1004.

    Article  Google Scholar 

  35. Naldrett, A.J., Fedorenko, V.A., Lightfoot, P.C., Kunilov, V.I., Gorbachev, N.S., Doherty, W., and Johan, Z., Ni–Cu–PGE deposits of Noril’sk region, Siberia: their formation in conduits for flood basalt volcanism, Trans. Inst. Min. Metall, 1995, vol. 104, pp. B18–B36.

    Google Scholar 

  36. Ohmoto, H. and Rye, R.O., Isotope of sulfur and carbon, Geochemistry of Hydrothermal deposits, Barnes, H.L., Eds., John Wiley & Sons, 1979, pp. 509–567.

    Google Scholar 

  37. Poulson, S.R. and Ohmoto, H., Devolatilization equilibria in graphite–pyrite–pyrrhotite bearing pelites with application to magma–pelite interaction, Contrib. Mineral. Petrol., 1989, vol. 101, pp. 418–425.

    Article  Google Scholar 

  38. Rad’ko, V.A., Fatsii intruzivnogo i effuzivnogo magmatizma Noril’skogo raiona (Facies and Effusive Magmatism of the Noril’sk Region), St. Petersburg: Kartograficheskaya fabrika VSEGEI, 2016.

  39. Ripley, E.M. and Li, C., Sulfur isotope exchange and metal enrichment in the formation of magmatic CuNi–PGE deposits, Econ. Geol., 2003, vol. 98, pp. 635–641.

    Article  Google Scholar 

  40. Ripley, E.M., Lightfoot, P.C., Li, C., et al., Sulfur isotopic studies of continental flood basalts in the Noril’sk region: implications for the association between lavas and ore-bearing intrusions, Geochim. Cosmochim. Acta, 2003, vol. 67, pp. 2805–2817.

    Article  Google Scholar 

  41. Ripley, E.M., Li, C., Craig, H., et al., Micro-scale s isotope studies of the Kharaelakh intrusion, Noril’sk region, Siberia: constraints on the genesis of coexisting anhydrite and sulfide minerals, Geochim. Cosmochim. Acta, 2010, vol. 74, pp. 634–644.

    Article  Google Scholar 

  42. Robertson, J.C., Barnes, J.S., and Le Vaillant, M., Dynamics of magmatic sulphide droplets during transport in silicate melts and implications for magmatic sulphide ore formation, J. Petrol., 2015, vol. 56, pp. 2445–2472.

    Article  Google Scholar 

  43. Ryabov, V.V., Shevko, A.Ya., and Gora, M.P., Magmaticheskie porody Noril’skogo raiona (Magmatic Rocks of the Noril’sk Region), Novosibirsk: Nonparel’, 2000.

  44. Ryabov, V.V., Shevko, A.Y., and Gora, M.P., Trap Magmatism and Ore Formation in the Siberian Noril’sk Region, Dordrecht: Springer, 2014.

    Book  Google Scholar 

  45. Ryabov, V.V., Simonov, O.N., Snisar, S.G., and Borovikov, A.A., The source of sulfur in sulfide deposits in the Siberian platform traps (from isotope data), Russ. Geol. Geophys., 2018, vol. 59, no. 8, pp. 945–961.

    Article  Google Scholar 

  46. Samalens, N., Barnes, S.J., and Sawyer, E.W., The role of black shales as a source of sulfur and semimetals in magmatic nickel–copper deposits: example from the Partridge River intrusion, Duluth Complex, Minnesota, USA, Ore Geol. Rev., 2017, vol. 81, pp. 173–187.

    Article  Google Scholar 

  47. Schoneveld, L., Barnes, S.J., Godel, B., Le Vaillant, M., Yudovskaya, M.A., Kamenetsky, V., and Sluzhenikin, S.F., Oxide–sulfide–melt–bubble interactions in spinel-rich taxitic rocks of the Norilsk–Talnakh intrusions, Polar Siberia, Econ. Geol., 2020, vol. 115, pp. 1305–1320.

    Article  Google Scholar 

  48. Sluzhenikin, S.F. and Krivolutskaya, N.A., Pyasino–Vologochan intrusion: geological structure and platinum–copper–nickel ores (Norilsk region), Geol. Ore Deposits, 2015, vol. 57, no. 5, pp. 381–401.

    Article  Google Scholar 

  49. Sluzhenikin, S.F., Malitch, K.N., and Grigor’eva, A.V., Differentiated mafic–ultramafic intrusions of the Kruglogorsky type in the Noril’sk Area: petrology and ore potential, Petrology, 2018, vol. 26, no. 3, pp. 280–313.

    Article  Google Scholar 

  50. Sluzhenikin, S.F., Malitch K.N., and Turovtsev, D.M., Differentiated mafic–ultramafic intrusions of the Zubovsky type in the Norilsk Area: petrochemistry, geochemistry, and ore potential, Petrology, 2020, vol. 28, no. 5, pp. 458–490.

    Article  Google Scholar 

  51. Sluzhenikin, S.F., Yudovskaya, M.A., Barnes, S.J., Abramova, V.D., Le Vaillant, M., Petrenko, D.B., Grigor’eva, A.V., and Brovchenko, V.D., Low-sulfide platinum group element ores of the Norilsk–Talnakh camp, Econ. Geol., 2020, vol. 115, pp. 1267–1303.

    Article  Google Scholar 

  52. Taylor, H.P., Jr., Water/rock interaction and the origin of H2O in granitic batholiths, J. Geol. Soc. London, 1977, vol. 133, pp. 509–558

    Article  Google Scholar 

  53. Thode, H.G. and Monster, J., Sulphur isotope geochemistry of petroleum, evaporites and ancient seas, AAPG Mem., 1965, pp. 367–77.

  54. Turovtsev, D.M., Kontaktovyi metamorfizm Noril’skikh intruzii (Contact Metamorphism of the Norilsk Intrusions), Moscow: Nauchnyi mir, 2002.

  55. Urvantsev, N.N., Some problems of the formation of ore-bearing intrusions and ores of Norilsk, Medno-nikelevye rudy Talnakhskogo rudnogo uzla (Copper–Nickel Ores of the Talnakh Ore Cluster), Leningrad: NIIGA, 1972, pp. 123–127.

    Google Scholar 

  56. Velivetskaya, T.A., Ignatiev, A.V., Yakovenko, V.V., and Vysotskiy, S.V., An improved femtosecond laser-ablation fluorination method for measurements of sulfur isotopic anomalies (δ33S and δ36S) in sulfides with high precision, Rapid Commun. Mass Spectrom., 2019, vol. 33, pp. 1722–1729.

    Article  Google Scholar 

  57. Vinogradov, A.P. and Grinenko, L.N., Sulfur isotope composition of sulfides of copper–nickel deposits and occurrences of the Noril’sk region and relation with problems of their genesis, Geokhimiya, 1966, no. 1, pp. 3–14.

  58. Yao, Z. and Mungall, J.E., Linking the Siberian flood basalts and giant Ni–Cu–PGE sulfide deposits at Norilsk, JGR Solid Earth Res., 2021. https://doi.org/10.1029/2020JB020823

  59. Yudovskaya, M.A., Sluzhenikin, S.F., Costin, G., Shatagin, K.N., Dubinina, E.O., Grobler, D.F., Ueckermann, H., and Kinnaird, J.A., Anhydrite assimilation by ultramafic melts of the bushveld complex, and its consequences to petrology and mineralization, Soc. Econom. Geol. Special Publ., 2018, vol. 21, pp. 177–206.

    Google Scholar 

  60. Zotov, I.A., Genezis trappovykh intruzivov i metamorficheskikh obrazovanii Talnakha (Genesis of Trap Intrusions and Metamorphic Rocks of Talnakh), Moscow: Nauka, 1979.

Download references

ACKNOWLEDGMENTS

We are grateful to the directorate of PAO GMK Norilsk Nickel and OOO Norilskgeologiya (now NN Tekhnicheskie Servisy) for financial support of field and analytical works, constant interest, attention, and help in our studies. We also thank E.O. Dubinina and S.F. Sluzhenikin for constructive critical remarks and reviews, which improved the manuscript.

Funding

The study at the Institute of Geology of Ore Deposits, Petrography, Mineralogy, and Geochemistry, Russian Academy of Sciences was supported by the Russian Science Foundation, project no. 21-17-00119.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. A. Ketrov or M. A. Yudovskaya.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by I. Melekestseva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ketrov, A.A., Yudovskaya, M.A., Shelukhina, Y.S. et al. Sources and Evolution of Sulfur Isotopic Composition of Sulfides of the Kharaelakh and Pyasino–Vologochan Intrusions, Norilsk Ore Region. Geol. Ore Deposits 64, 350–376 (2022). https://doi.org/10.1134/S1075701522050038

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1075701522050038

Navigation