Log in

Trace Element Composition of Archean Detrital Zircons from Jatulian Terrigenous Rocks of Fennoscandia

  • MINERALS AND MINERAL PARAGENESES
  • Published:
Geology of Ore Deposits Aims and scope Submit manuscript

Abstract

Detrital zircons with an age of 3.65–3.87 Ga have been found earlier in Jatulian terrigenous rocks from the eastern Fennoscandian Shield, i.e., the Karelian and Kola regions (Kozhevnikov et al., 2010; Smol’kin et al., 2011, 2019), while rocks of this age are not reported in the inferior Sumian–Sariolian complexes and in the Archean basement. To establish the provenance area and composition of the sources, the first study of geochemical composition (rare-earth and trace elements) of detrital zircons from Jatulian red gravelstones of the Luchlompol’skaya Fm., Pechenga structure, quartzites of the Volomskaya syncline, and cement of conglomerates in the western Onega Trough, which are located at considerable distances from each other, has been carried out. The age of detrital zircon grains ranges mainly within 2.70–3.23 Ga. Some of the detrital zircon grains are of igneous type. Grains and outer envelopes of zonal grains having the youngest age (2.70–2.72 Ga) are referred to the metamorphic type. “Porous” zircon that underwent a fluid effect is also present. The main sources of igneous zircon grains were tonalite and trondhjemite gneisses and acid granulites, which are widespread in the vicinities of the studied structures and were revealed in the lower part of the Kola Superdeep Well (VSD-3), as well as gneisses and amphibolites of the Vodlozero block. The source of detrital zircon grains with an age of 3.65–3.87 Ga is the Siurua trondhjemite gneiss (northern Finland). Their erosion and transportation of zircons took place 2.2–2.1 Ga ago along the western margin of the Svecofennian–Pre-Labradorian Ocean that existed at the initial stage of the Columbia Supercontinent assemblage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Amelin, Yu.V., Heaman, L.M., and Semenov, V.S., U–Pb geochronology of layered mafic intrusions in the eastern Baltic Shield: implications for the timing and duration of Paleoproterozoic continental rifting, Precambrian Res., 1995, vol. 75, pp. 31–46.

    Article  Google Scholar 

  2. Balashov, Yu.A. and Skublov, S.G., Contrasting geochemistry of magmatic and secondary zircons, Geochem. Int, 2011, vol. 49, no. 6, pp. 594–604.

    Article  Google Scholar 

  3. Bayanova, T.B., Smolkin, V.F., Levkovich, N.L., and Ryungenen, G.I., U–Pb age of rocks of the Mt. General’skaya layered intrusion, Kola Peninsula, Geochem. Int., 1999, vol. 37, no. 1, pp. 1–10.

    Google Scholar 

  4. Bayanova, T., Kunakkuzin, E., Serov, P., Steshenko, E., Borisenko, E., Larionov, A., and Turkina, O., The oldest grey gneisses and tonalite-trondhjemite granodiorites in the Fennoscandian Shield: ID-TIMS and SHRIMP data, Open J. Geol., 2010, vol. 10, pp. 124–136.

    Article  Google Scholar 

  5. Bouvier, A.S., Ushikubo, T., Kita, N.T., Cavosie, A.J., Kozdon, R., and Valley, J.W., Li isotopes and trace elements as a petrogenetic tracer in zircon: insights from Archean TTGs and sanukitoids, Contrib. Miner. Petrol., 2012, vol. 163, pp. 745–768.

    Article  Google Scholar 

  6. Daly, J.S., Balagansky, V.V., Timmerman, M.J., Whitehouse, M.J., De Jong, K., Guise, P., Bogdanova, S., Gorbatschev, R., and Bridgwater, D., Ion microprobe U-Pb zircon geochronology and isotopic evidence for a trans-crustal suture in the Lapland-Kola Orogen, northern Fennoscandian Shield. Precambrian Res., 2001, vol. 105, pp. 289–314.

    Article  Google Scholar 

  7. Fedotova, A.A., Bibikova, E.V., and Simakin, S.G., Ion microprobe zircon geochemistry as an indicator of mineral genesis during geochronological studies, Geochem. Int., 2008, vol. 47, no. 9, pp. 912–927.

    Article  Google Scholar 

  8. Gehrels, G.E., Valencia, V.A., and Ruiz, J., Enhanced precision, accuracy, efficiency, and spatial resolution of U-Pb ages by laser ablation–multicollector-inductively coupled plasma-mass spectrometry, Geochem. Geophys. Geosyst., 2008, vol. 9, p. Q03017.

    Article  Google Scholar 

  9. Geologiya Karelii (Geology of Karelia), Sokolov, V.A., Eds., Leningrad: Nauka, 1987.

    Google Scholar 

  10. Grimes, C.B., John, B.E., Cheadle, M.J., Mazdab, F.K., Wooden, J.L., Swapp, S., and Schwartz, J.J., On the occurrence, trace element geochemistry, and crystallization history of zircon from in situ ocean lithosphere, Contrib. Mineral. Petrol., 2009, vol. 158, pp. 757–783.

    Article  Google Scholar 

  11. Grimes, C.B., Wooden, J.L., Cheadle, M.J., and John, B.E., “Fingerprinting” tectono-magmatic provenance using trace elements in igneous zircon, Contrib. Mineral. Petrol., 2015, vol. 170, p. 46.

    Article  Google Scholar 

  12. Hoskin, P.W.O., Trace-element composition of hydrothermal zircon and the alteration of Hadean zircon from the Jack Hills, Australia, Geochim. Cosmochim. Acta, 2005, vol. 69, pp. 637–648.

    Article  Google Scholar 

  13. Kol’skaya sverkhglubokaya. Nauchnye rezul’taty i opyt issledovanii (Kola Superdeep Well. Scientific Results and Research Experience), Moscow: MF Tekhnoneftegaz, 1998.

  14. Kozhevnikov, V.N., Skublov, S.G., Marin, Y.B., Medvedev, P.V., Systra, Y., and Valencia, V., Hadean–Archean detrital zircons from Jatulian quartzites and conglomerates of the Karelian craton, Dokl. Earth Sci., 2010a, vol. 431, no. 1, pp. 318–323.

    Article  Google Scholar 

  15. Kozhevnikov, V.N. and Skublov, S.G., Detritic zircons from the Archean quartzites of the Matlakhta greenstone belt of the Karelian Craton: Hydrothermal alterations, mineral inclusions, and isotope age, Dokl. Earth Sci, 2010b, vol. 430, no. 1, pp. 223–227.

    Article  Google Scholar 

  16. Kröner, A. and Compston, W., Archaean tonalitic gneiss of Finnish Lapland revisited: zircon ion-microprobe ages, Contrib. Mineral. Petrol., 1990, vol. 104, pp. 348–352.

    Article  Google Scholar 

  17. Levchenkov, O.A., Levsky, L.K., Nordgulen, O., Dobrzhinetskaya, L.F., Vetrin, V.R., Cobbing, J., Nillson, L.P., and Sturt, B.A., U–Pb zircon ages from Sorvaranger, Norway and the western part of the Kola Peninsula, Russia, Norsk. Geol. Unders. Spec. Publ., 1995, no. 7, pp. 29–47.

  18. McDonough, W.F. and Sun, S.S., The composition of the Earth, Chem. Geol., 1995, vol. 120, pp. 223–253.

    Article  Google Scholar 

  19. Mints, M.V., 3D model of the deep structure of the Svecofennian accretionary orogen: a geodynamic interpretation, Tr. Kar. Nauchn. Tsentra Ross. Akad. Nauk, 2018, no. 2, pp. 62–76.

  20. Mutanen, T. and Huhma, H., The 3.5 Ga Siurua trondhjemite gneiss in the Archaean Pudasjarvi Granulite Belt, northern Finland, Bull. Geol. Soc. Finland, 2003,vol. 75, pp. 51–68.

    Article  Google Scholar 

  21. Myskova, T.A. and Milkevich, R.I., The aluminous gneisses of the Kola Series, Baltic Shield (geochemistry, nature and age of protolith), Tr. Kar. Nauchn. Tsentra Ross. Akad. Nauk, 2016, no. 10, pp. 34–62.

  22. Myskova, T.A., Glebovitsky, V.A., Mil’kevich, R.I., Shuleshko, I.K., Berezhnaya, N.G., Lepekhina, E.N., Matukov, D.I., Antonov, A.V., and Sergeev, S.A., Findings of the oldest (3600 Ma) zircons in gneisses of the Kola Group, Central Kola Block, Baltic Shield: evidence from U–Pb (SHRIMP-II data), Dokl. Earth Sci., 2005, vol. 402, no. 4, pp. 547–550.

    Google Scholar 

  23. Myskova, T.A., Glebovitsky, V.A., Mil’kevich, R.I., Berezhnaya, N.G., and Skublov, S.G., Improvement of composition and age of aluminum gneisses of the Late Archean Uraguba greenstone structure, Kola Peninsula, Zap. Ross. Mineral. O-va, 2010, no. 3, pp. 15–21.

  24. Sergeev, S.A., Bibikova, E.V., Matukov, D.I., and Lobach-Zhuchenko, S.B., Age of the magmatic and metamor phic processes in the Vodlozero complex, Baltic shield: an ion microprobe (SHRIMP II) U–Th–Pb isotopic study of zircons, Geochem. Int, 2007, vol. 45, no. 2, pp. 198–205.

    Article  Google Scholar 

  25. Smolkin, V.F., Skuf’in, P.K., Mitrofanov, F.P., and Mokrousov, V.A., Stratigraphy and volcanism in the Early Proterozoic Pechenga structure (Kola Peninsula), Stratigraphy. Geol. Correlation, 1996, vol. 4, no. 1, pp. 78–94.

    Google Scholar 

  26. Smolkin, V.F., Kozhevnikov, V.N., and Kapitonov, I.N., First results of local U–Pb dating of zircon (SHRIMP-II) from metasediments and turbidites of the Pechenga structure and geodynamic reconstructions, Mineralogiya, petrologiya I poleznye iskopamye Kol’skogo regiona. Tr. VIII Vseross. (s mezhd. Uchastiem) Fersmanovskoi nauchn. sessii posvyashchennoi 135-letiyu so dnya rozhdeniya akad. D.S. Belyankina (Mineralogy, Petrology and Mineral Resources of the Kola Region. Proc. 8th Fersman All-Russian (with International Participation) Conference Dedicated to the 135th anniversary of the Academician D.S. Belyankin), Apatity: K&M, 2011, pp. 208–213.

  27. Smolkin, V.F., Mezhelovskaya, S.V., and Mezhelovsky, A.D., Sources of terrigenous clastic material of the Pechenga ore-bearing structure from data of detrital zircon isotopic analysis (SIMS SHRIMP-II, LAICPMS), Dokl. Earth Sci., 2019, vol. 488, no. 2, pp. 1245–1249.

    Article  Google Scholar 

  28. Vetrin, V.R., Chupin, V.P., and Yakovlev, Yu.N., Metasedimentary gneisses of the basement of Paleoproterozoic Pechenga structure: terrigenous sources of the material, paleogeodynamic condition of the formation. Litosfera, 2013, no. 5, pp. 3–25.

  29. Vetrin, V.R., Belousova, E.A., and Chupin, V.P., Trace element composition and Lu-Hf isotope systematic of zircon from plagiogneisses of the Kola superdeep well: Contribution of a Paleoarchean crust in Mesoarchean metavolcanic rocks, Geochem. Int, 2016, vol. 54, no. 1, pp. 92–111.

    Article  Google Scholar 

  30. Watson, E.B., Wark, D.A., and Thomas, J.B., Crystallization thermometers for zircon and rutile, Contrib. Miner. Petrol, 2006, vol. 151, pp. 413–433.

    Article  Google Scholar 

  31. Williams, I.S., U–Th–Pb geochronology by ion microprobe, Rev. Econ. Geol., 1998, vol. 7, pp. 1–35.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to S.G. Simakin and E.V. Potapov (Yaroslavl Branch, Valiev Physical-Technological Institute, Russian Academy of Sciences, Yaroslavl) for help in zircon studies. We also acknowledge V.N. Kozhevnikov (Geological Institute, Karelian Science Center of the Russian Academy of Sciences, Petrozavodsk) for the opportunity to investigate zircons from Jatulian rocks of Karelia.

Funding

This study was supported by the Russian Foundation for Basic Research (project no. 17-05-00592) and in the framework of research projects conducted by the Institute of Precambrian Geology and Geochronology, Russian Academy of Sciences (no. FMNU-2019-0002), and Geological Institute, Kola Science Center of the Russian Academy of Sciences (no. 0226-2019-0052).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. F. Smolkin, S. G. Skublov or V. R. Vetrin.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by N. Astafiev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smolkin, V.F., Skublov, S.G. & Vetrin, V.R. Trace Element Composition of Archean Detrital Zircons from Jatulian Terrigenous Rocks of Fennoscandia. Geol. Ore Deposits 63, 869–880 (2021). https://doi.org/10.1134/S1075701521080092

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1075701521080092

Keywords:

Navigation