Log in

Conditions and Mechanisms of the Formation of Sulfide–Oxide Mineralization upon Melt Differentiation in the Intermediate Chamber: Example of Intrusion on the Western Slope of the Southern Urals

  • Published:
Geology of Ore Deposits Aims and scope Submit manuscript

Abstract—

The materials on the geology, geochemistry, and mineralogy of the differentiated body of the Misaelga Complex located in the Taratash metamorphic complex on the western slope of the Southern Urals are reported. The performed studies show that the distribution of PGEs and gold along the section of a differentiated body indicates its asymmetric structure. Comparative analysis of the normalized contents of noble metals in rocks of the complex and picrite of the western slope of the Southern Urals and the adjacent part of the East European Platform shows that the rocks are characterized by general tendencies, namely, the predominance of Pd over Pt and the “rhodium anomaly.” The REE distribution in rocks of the complex is characterized by their “inert” behavior upon intrachamber melt differentiation. The residual melt became sharply enriched in the entire group of REE only at the final stages. Detailed mineralogical analysis of silicates and aluminosilicates allowed us to calculate the P–T parameters of their crystallization: intratelluric olivine, 1472°C; olivine from the groundmass, 1050–1183°C; pyroxenes, 1071–1073°C; amphibole, T = 950–1045°C, P = 4.0–7.4 kbar. Variations in the chemical composition of the major rock-forming minerals and the internal structure of the differentiated body are satisfactorily described by the fractional crystallization model for the mechanism of directed crystallization with gravitational precipitation of olivine, olivine + clinopyroxene, and early-generation ore minerals at the initial stages of the massif’s formation. It is shown that the generalized process of the sulfide and Fe–Ti mineralization upon melt differentiation in the intermediate chamber includes crystallization of a sulfide and Fe–Ti melt depending on its composition; crystallization of iss in the form of intermediate compounds, chrome–magnetite, and Cr–Mg-ilmenite, as well as compositional evolution of pentlandite towards Co-bearing varieties. At the final stage, the decomposition of Fe–Ti-solid solutions with different numbers and compositions of coexisting phases occurs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.

Similar content being viewed by others

REFERENCES

  1. Aitcheson, S.J., and Forrest, A.H., “Quantification of crustal contamination in open magmatic systems, J. Petrol., 1994, vol. 35, no. 2, pp. 461–488. https://doi.org/10.1093/petrology/35.2.461

    Article  Google Scholar 

  2. Alekseev, A.A., Rifeisko-vendskii magmatizm zapadnogo sklona Yuzhnogo Urala (Riphean–Vendian Magmatism of the Western Slope of the South Urals), Moscow: Nauka, 1984.

  3. Alekseev, A.A., Alekseeva, G.V., and Kovalev, S.G., Rassloennye intruzii zapadnogo sklona Urala (Layered Intrusions of the Western Slope of the Urals), Ufa: Gilem, 2000.

  4. Ariskin, A.A. and Barmina, G.S., Modelirovanie fazovykh ravnovesii pri kristallizatsii bazal’tovykh magm (Modeling of Phase Equilibria during Crystallization of Basaltic Magmas), Moscow: Nauka, 2000.

  5. Ariskin, A.A., Barmina, G.S., and Frenkel’, M.Yu., Simulation of crystallization of tholeiitic magma at low pressure and fixed oxygen fugacity, Geokhimiya, 1986, vol. 24, no. 5, pp. 92–100.

    Google Scholar 

  6. Ariskin, A.A., Frenkel, M.Ya., Barmina, G.S., and Nielsen, R.L., Comagmat: a fortran program to model magma differentiation processes, Comput. Geosci., 1993, vol. 19, no. 8, pp. 1155–1170.

    Google Scholar 

  7. Bai, Z.-J., Zhong, H., Naldrett, A.J., Zhu, W.-G., and Xu, G.-W., Whole-rock and mineral composition of constraints on the genesis of the giant Hongge Fe–Ti–V oxide deposit in the Emeishan large igneous province, Southwest China, Econ. Geol., 2012, vol. 107, no. 3, pp. 507–524.

    Google Scholar 

  8. Barnes, S.J. and Lightfoot, P.C., Formation of magmatic nickel–sulfide ore deposits and affecting their copper and platinum-group element contents, Econ. Geol., 2005, vol. 100, pp. 179–213.

    Google Scholar 

  9. Barnes, S.-J. and Maier, W.D., The fractionation of Ni, Cu and the noble metals in silicate and sulfide liquids, C.E.G. Geol. Ass. Canada. Short Course, 1999, vol. 13, pp. 69–106.

    Google Scholar 

  10. Beattie, P., Olivine–melt and orthopyroxene–melt equilibria, Contrib. Mineral. Petrol., 1993, vol. 115, no. 1, pp. 103–111.

    Google Scholar 

  11. Berman, R.G., Internally-consistent thermodynamic data for minerals in the system Na2O–K2O–CaO–MgO–FeO–Fe2O3–A12O3–SiO2–TiO2–H2O–CO2, J. Petrol., 1988, vol. 29, no. 2, pp. 445–522.

    Google Scholar 

  12. Blundy, J.D. and Holland, T.J.B., Calcic amphibole equilibria and a new amphibole-plagioclase geothermometer, Contrib. Mineral. Petrol., 1990, vol. 104, no. 2, pp. 208–224. https://doi.org/10.1007/bf00306444

    Article  Google Scholar 

  13. Bohrson, W.A. and Spera, F.J., Energy-constrained open-system magmatic processes II: Application of energy-constrained assimilation-fractional crystallization (EC-AFC) model to magmatic systems, J. Petrol., 2001, vol. 42, no. 5, pp. 1019–1041.

    Google Scholar 

  14. Bowen, N.L., The Evolution of the Igneous Rocks, Princeton: University Press, Princeton, 1928.

    Google Scholar 

  15. Bychkov, D.A. and Koptev-Dvornikov, E.V., Kri-Minal Software for Modeling of Melt–Solid phase equilibria a given bulk composition of the system, Ul’tramafit-mafitovye kompleksy skladchatykh oblastei dokembriya: Mater. mezhd. Konf (Ultramafic–Mafic Compelxes of the Precambrian Fold Areas), Ulan-Ude: BurNTs SO RAN, 2005, pp. 122–123.

  16. Charlier, B. and Grove, T.L., Experiments on liquid immiscibility along tholeiitic liquid lines of descent, Contrib. Mineral. Petrol., 2012, vol. 164, no. 1, pp. 27–44.

    Google Scholar 

  17. DePaolo, D.J., Trace element and isotopic effects of combined wallrock assimilation and fractional crystallization, Earth Planet. Sci Lett., 1981, vol. 53, no. 2, pp. 189–202. https://doi.org/10.1016/0012-821x(81)90153-9

    Google Scholar 

  18. Drits, V.A. and Kossovskaya, A.G., Glinistye mineraly: slyudy, khlority (Clay Minerals: Micas, Chlorites), Moscow: Nauka, 1991.

  19. Fleet, M.E. and Pan, Y., Fractional crystallization of anhydrous sulfide liquid in the system Fe–Ni–Cu–S, with application to magmatic sulfide deposits, Geochim. Cosmochim. Acta, 1994, vol. 58, no. 16, pp. 3369–3377. https://doi.org/10.1016/0016-7037(94)90092-2

    Google Scholar 

  20. Frenkel’, M.Ya., Yaroshevskii, A.A., Ariskin, A.A., Barmina, G.S., Koptev-Dvornikov, E.V., and Kireev B.S. Dinamika vnutrikamernoi differentsiatsii bazitovykh magm (dynamics of Intrachamber Differentiation of Basic Magmas), Moscow: Nauka, 1988.

  21. Giret, A., Bonin, B., and Leger, J.M., Amphibole compositional trends in oversaturated alkaline plutonic ring-complexes, Can. Mineral., 1980, vol. 18, pp. 481–495.

    Google Scholar 

  22. Huebner, J.S. and Sato, M., The oxygen fugacity-temperature relationships of manganese oxide and nickel oxide buffers, Am. Mineral., 1970, vol. 55, pp. 934–952.

    Google Scholar 

  23. Jakobsen, J.K., Veksler, I.V., Tegner, C., and Brooks, C.K., Crystallization of the Skaergaard intrusion from an emulsion of immiscible iron and silica-rich liquids: evidence from melt inclusions in plagioclase, J. Petrol., 2011, vol. 52, no. 2, pp. 345–373. https://doi.org/10.1093/petrology/egq083

    Google Scholar 

  24. Kholodnov, V.V., Bocharnikova, T.D., and Shagalov, E.S., Composition, age, and genesis of magnetite–ilmenite ores of the Middle Ripheam stratified Medvedev massif (Kusin–Kopan Compelx, South Urals), Litosfera, 2012, no. 5, pp. 145–165.

  25. Kovalev, S.G., Differentsirovannye diabaz-pikritovye kompleksy zapadnogo sklona Yuzhnogo Urala (Differentiated Diabase–Picritic Complexes of the Western Slope of the South Urals), Ufa: IG UNTs RAN, 1996. 99 s.

  26. Kovalev, S.G., Kovalev, S.S., Vysotskii, S.I., Noble-metal geochemical specialization of Mesoproterozoic magmatic complexes of the Bashkirian megantliclinorium in the eastern margin of the East European Platform, Litosfera, 2018, vol. 18, no. 2, pp. 295–313. https://doi.org/10.24930/1681-9004-2018-18-2-295-313

    Article  Google Scholar 

  27. Kovalev, S.G., Maslov, A.V., and Gareev, E.Z., Noble Metal specialization of Lower and Middle Riphean terrigenous rocks in the South Urals, Lithol. Mineral. Resour., 2016, vol. 51, no. 6, pp. 467–483. https://doi.org/10.1134/S0024490216060055

    Article  Google Scholar 

  28. Kovalev, S.G., Maslov, A.V., Kovalev, S.S., and Vysotskii, S.I., New data on the Sm–Nd age of picrites in the Lysogorsk Complex, Southern Urals, Dokl. Earth Sci., 2019, vol. 488, no. 1, pp. 1018–1021

    Google Scholar 

  29. Kovalev, S.G., Puchkov, V.N., and Kovalev, S.S., First findings of siegenite (CoNi2S4) in picritic and picrodoleritic complexes of the Southern Urals, Dokl. Earth Sci., 2014, vol. 457, no. 1, pp. 796–802. https://doi.org/10.1134/S1028334X1407023X

    Article  Google Scholar 

  30. Kovalev, S.G., Puchkov, V.N., Kovalev, S.S., and Vysotskii, S.I., Minerals of the Fe–Ni–Co–Cu–S system in picrite intrusions of the Southern Urals: signatures of liquation and differentiation of the sulfide melt, Dokl. Earth Sci., 2020, vol. 492, no. 1, pp. 311–316. https://doi.org/10.1134/S1028334X20050086

    Article  Google Scholar 

  31. Kovalev, S.G., Puchkov, V.N., Vysotskii, S.I., and Kovalev, S.S., Conditions of formation of igneous rocks in plume magmatism at the example of the western slope of the Southern Urals, Dokl. Earth Sci., 2017, vol. 475, no. 1, pp. 743–747. https://doi.org/10.1134/S1028334X17070169

    Article  Google Scholar 

  32. Kranidiotis, P., and Maclean, W.H., Systematic of chlorite alteration at the Phelps Dodge massive sulfide deposit, Matagami, Quebec, Econ. Geol., 1987, vol. 82, no. 7, pp. 1898–1911. https://doi.org/10.2113/gsecongeo.82.7.1898

    Google Scholar 

  33. Kravchenko, T.A. and Nenasheva, S.N., New phases in Cu–Ni ores of the Norilsk deposits, New Data on Minerals, 2015, vol. 50, pp. 84-88.

    Google Scholar 

  34. Kretz, R., Transfer and exchange equilibria in a portion of the pyroxene quadrilateral as deduced from natural and experimental data, Geochim. Cosmochim. Acta, 1982, vol. 46, no. 3, pp. 411–422. https://doi.org/10.1016/0016-7037(82)90232-0

    Google Scholar 

  35. Kullerud, G., Yund, R.A., and Moh, G.H., Phase relations in the Cu–Fe–S, Cu–Ni–S, and Fe–Ni–S systems, in Magmatic Ore Deposits, Wilson, H.D.B., Eds., Econ. Geol. Monograph., 1969, vol. 4, pp. 323–343. URL: https://pubs.geoscienceworld.org/books/book/1856/chap-ter/107712764/Phase-Relations-in-the-Cu-Fe-S-Cu-Ni-S-and-Fe-Ni-S. https://doi.org/10.5382/Mono.04.23

    Book  Google Scholar 

  36. Lepage, L.D., Ilmat: an excel worksheet for ilmenite–magnetite geothermometry and geobarometry, Comp. Geosci, 2003, vol. 29, no. 5, pp. 673–678. https://doi.org/10.1016/s0098-3004(03)00042-6

    Google Scholar 

  37. Lindsley, D.H. and Spencer, K.J., Fe–Ti oxide geothermometry: reducing analyses of coexisting Ti-magnetite (mt) and ilmenite (ilm), Am. Geophys. Union, 1982, vol. 63, no. 18, p. 471.

    Google Scholar 

  38. Loucks, Robert R., A precise olivine–augite Mg–Fe-exchange geothermometer, Contrib Mineral. Petrol., 1996, vol. 125, nos. 2–3, pp. 140–150.

    Google Scholar 

  39. McDonough, W.F. and Sun, S.S., Composition of the earth, Chem. Geol., 1995, vol. 120, pp. 223–253.

    Google Scholar 

  40. Myers, J. and Eugster, H.P., The system Fe–Si–O: oxygen buffer calibrations to 1,500 K, Contrib. Mineral. Petrol., 1983, vol. 82, no. 1, pp. 75–90. https://doi.org/10.1007/bf00371177

    Google Scholar 

  41. Naldrett, A.J., Ebel, D.S., Asif, M., Morrison, G., and Moore, C.M., Fractional crystallization of sulfide melts as illustrated at Noril’sk and Sudbury, Eur. J. Mineral., 1997, vol. 9, no. 2, pp. 365–378. https://doi.org/10.1127/ejm/9/2/0365

    Google Scholar 

  42. Nathan, H.D. and Vankirk, C.K., A model of magmatic crystallization, J. Petrol., 1978, vol. 19, no. 1, pp. 66–94. https://doi.org/10.1093/petrology/19.1.66

    Google Scholar 

  43. Nielsen, R.L., Equil: a program for the modeling of low-pressure differentiation processes in natural mafic magma bodies, Comp. Geosci., 1985, vol. 11, no. 5, pp. 531–546. https://doi.org/10.1016/0098-3004(85)90084-6

    Google Scholar 

  44. Nielsen, R.L., Trace for: a program for the calculation of combined major and trace-element liquid lines of descent for natural magmatic systems, Comp. Geosci., 1988, vol. 14, no. 1, pp. 15–35. https://doi.org/10.1016/0098-3004(88)90050-7

    Google Scholar 

  45. Pang, K.-N., Zhow, M.-F., Lindsley, D., Zhao, D., and Malpas, J., Origin of Fe–Ti oxide ores in mafic intrusions: evidence from the Panzhihua intrusion, SW China, J. Petrol., 2008, vol. 49, no. 2, pp. 295–313. https://doi.org/10.1093/petrology/egm082

    Google Scholar 

  46. Perchuk, L.L., Saxena, S.K., and Bhattacharji, S., Thermodynamic Control of Metamorphic Processes in Energetics of Geological Processes, New York: Springer, 1977.

    Google Scholar 

  47. Powell, R., Inversion of the assimilation and fractional crystallization (AFC) equations; characterization of contaminants from isotope and trace element relationships in volcanic suites, J. Geol. Soc., 1984, vol. 141, no. 3, pp. 447–452. https://doi.org/10.1144/gsjgs.141.3.0447

    Google Scholar 

  48. Roedder, P.L. and Emslie, R.F., Olivine–liquid equilibrium, Contrib. Mineral. Petrol., 1970, vol. 29, no. 4, pp. 275–289. https://doi.org/10.1007/bf00371276

    Google Scholar 

  49. Sharkov, E.V., Chistyakov, A.V., Shchiptsov, V.V., Bogina, M.M., and Frolov, P.V., Origin of Fe–Ti oxide mineralization in the Middle Paleoproterozoic Elet’ozero syenite–gabbro intrusive complex (Northern Karelia, Russia, Geol. Ore Deposits, 2018, vol. 60, no. 2, pp. 172–200, https://doi.org/10.1134/S1075701518020046

    Article  Google Scholar 

  50. Sinyakova, E.F. and Kosyakov, V.I., Phase relationships and sulfur fugacity in the system Fe–FeS–NiS–Ni at 900°C, Russ. Geol. Geophys., 2006, vol. 47, no. 7, pp. 835–846.

    Google Scholar 

  51. Sinyakova, E.F., Kosyakov, V.I., Kokh, K.A., and Naumov, E.A., Sequential crystallization of pyrrhotite, cubanite, and intermediate solid solution from Cu–Fe–(Ni)–S melt, Russ. Geol. Geophys., 2019, vol. 60, no. 11, pp. 1257–1266. https://doi.org/10.15372/RGG2019091

    Article  Google Scholar 

  52. Spera, F.J. and Bohrson, W.A., Energy-constrained open-system magmatic processes, 1: General model and energy constrained assimilation and fractional crystallization (ECAFC) formulation, J. Petrol., 2001, vol. 42, no. 5, pp. 999–1018. https://doi.org/10.1093/petrology/42.5.999

    Google Scholar 

  53. Spera, F.J. and Bohrson, W.A., Energy-constrained open system magmatic processes, 3. energy-constrained recharge, assimilation, and fractional crystallization (EC-RAFC), Geochem. Geophys., Geosyst., 2002, vol. 3, no. 12, pp. 1–20. https://doi.org/10.1029/2002gc000315

    Google Scholar 

  54. Spera, F.J. and Bohrson, W.A., Open-system magma chamber evolution: an energy-constrained geochemical model incorporating the effects of concurrent eruption, recharge, variable assimilation and fractional crystallization (EC-E’RA FC), J. Petrol., 2004, vol. 45, no. 12, pp. 2459–2480. https://doi.org/10.1093/petrology/egh072

    Google Scholar 

  55. Tsusue, A., The distribution of manganese and iron between ilmenite and granitic magma in the Osumi Peninsula, Japan, Contrib. Mineral. Petrol, 1973, vol. 40, no. 4, pp. 305–314. https://doi.org/10.1007/bf00371021

    Google Scholar 

  56. Wager, L.R. and Brown, G.M, Layered Igneous Rocks, Edinburgh: Oliver and Boyd, 1968.

    Google Scholar 

  57. Veksler, I.V., Dorfman, A.M., Borisov, A.A., Wirth, R., and Dingwell, D.B., Liquid immiscibility and the evolution of basaltic magma, J. Petrol., 2007, vol. 48, no. 11, pp. 2187–2210. https://doi.org/10.1093/petrology/egm056

    Google Scholar 

  58. Wang, C.Y. and Zhou, M.F., New textural and mineralogical constraints on the origin of Hongge Fe–Ti–V oxide deposits, SW China, Mineral. Deposita, 2013, vol. 48, no. 6, pp. 787–798. https://doi.org/10.1007/s00126-013-0457-4

    Google Scholar 

  59. Wells, P.R.A., Pyroxene thermometry in simple and complex systems, Contrib. Mineral. Petrol., 1977, vol. 62, no. 2, pp. 129–139. https://doi.org/10.1007/bf00372872

    Google Scholar 

  60. Wood, B.J. and Banno, S., Garnet–orthopyroxene and orthopyroxene–clinopyroxene relationships in simple and complex systems, Contrib. Mineral. Petrol., 1973, vol. 42, no. 2, pp. 109–124. https://doi.org/10.1007/bf00371501

    Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to V.A. Kotlyarov for a highly professional analysis of minerals and to the anonymous reviewers for useful comments that improved the article.

Funding

This study was performed as a part of the state task of the Institute of Geology, Ufa Federal Research Center, Russian Academy of Sciences (topic no. 0252-2017-0012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. G. Kovalev.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by A. Bobrov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kovalev, S.G., Kovalev, S.S. Conditions and Mechanisms of the Formation of Sulfide–Oxide Mineralization upon Melt Differentiation in the Intermediate Chamber: Example of Intrusion on the Western Slope of the Southern Urals. Geol. Ore Deposits 63, 556–578 (2021). https://doi.org/10.1134/S1075701521060039

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1075701521060039

Keywords:

Navigation