Log in

Distribution of radioactive isotopes in rock and ore of Arkhangelskaya pipe from the Arkhangelsk diamond province

  • Published:
Geology of Ore Deposits Aims and scope Submit manuscript

Abstract

The contents of radioactive elements and the uranium isotopic composition of kimberlite in the Arkhangelskaya pipe at the M.V. Lomonosov deposit and of nearby country rocks have been studied. A surplus of 234U isotope has been established in rocks from the near-pipe space. The high γ = 234U/238U ratio is controlled by the geological structure of the near-pipe space. A nonequilibrium uranium halo reaches two pipe diameters in size and can be regarded as a local ore guide for kimberlite discovery. The rocks in the nearpipe space are also characterized by elevated or anomalous U, Th, and K contents with respect to the background.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahrens, L.H., Cherry, R.D., and Erlank, A.J., Observation on the Th-U relationship in zircons from granitic rocks and from kimberlites, Geochim Cosmochim Acta, 1967, no. 31, pp. 2379–2387.

    Article  Google Scholar 

  • Androsov, E.A., Verzhak V.V., Larchenko, V.A., et al., Structural control of distribution of kimberlite bodies by the example of the Arkhangel’sk kimberlite province, Effektivnost’ prognozirovaniya i poiskov mestorozhdenii almazov: proshloe, nastoyashchee i budushchee (almazy-50) (Efficiency of Diamond Prediction and Prospecting: Past, Present, and Future (Diamonds-50)), St. Peterburg: VSEGEI, 2004. S. 9–18.

    Google Scholar 

  • Arbuzov, S.I. and Rikhvanov, L.P., Geokhimiya radioaktivnykh elementov. Uchebnoe posobie (Geochemistry of Radioactive Elements. A Textbook), Tomsk: Izd-vo Tomskogo politekhnicheskogo instituta, 2009.

    Google Scholar 

  • Babayants, P.S., Blokh, Yu.I., Zubov, E.I., et al., Interpretation of air-borne geophysical data during prospecting of solid mineral resources, Razved. Okhr. Nedr, 2006, no. 5, pp. 18–26.

    Google Scholar 

  • Bogatikov, O.A., Garanin, V.K., Kononova, V.A., et al., Arkhangel’skaya almazonosnaya provintsiya (Geologiya, petrografiya, geokhimiya i mineralogiya) (Arkhangelsk Diamond Province: Geology, Petrography, Geochemistry, and Mineralogy), Moscow: MGU, 1999.

    Google Scholar 

  • Bushkov, K.Yu., Structure of the Nakyn Kimberlite Field and Signs of Hidden Shear Kimberlite-Controlling Structures, Extended Abstract of Candidate (Geol-Min.) Dissertation, Moscow, 2006.

    Google Scholar 

  • Chalov, P.I., Izotopnoe fraktsionirovanie prirodnogo urana (Isotope Fractionation of Natural Uranium), Frunze: Ilim, 1975.

    Google Scholar 

  • Chalov, P.I., Kiselev, G.P., Tikhonov, A.I., et al., Spatial correlation of anomalous excess of 234U in the groundwaters and mercury–stibium mineralization of the telethermal type, Dokl. Akad. Nauk USSR, 1990(a), vol. 312, no. 3, pp. 580–583.

    Google Scholar 

  • Chalov, P.I., Tikhonov, A.I., Kiselev, G.P., et al., Origin of the groundwaters of the Chauvai ore field, Geol. Rudn. Mestorozhd., 1990(b), no. 3, pp.103–109.

    Google Scholar 

  • Chebykin, E.P., Rasskazov, S.V., Vodneva, E.N., et al., First results of 234U/238U monitoring in water from active faults on the western coast of south Baikal, Dokl. Earth Sci., 2015, vol. 460, pp. 142–145.

    Article  Google Scholar 

  • Cherdyntsev, V.V., Uran-234 (Uranium-234), Moscow: Atomizdat, 1969.

    Google Scholar 

  • Cherdyntsev, V.V. and Chalov, P.I. Natural fractionation of 234U and 238U, Otkrytiya v SSSR, M.: UNIIPI, 1977, pp. 28–31.

    Google Scholar 

  • Erinchek, Yu. M., Rykhlova T.I., Valueva, N.I., et al., Detailed lithological–stratigraphic subdivision of the Vendian Padun Formation in the Zimnii Bereg diamond district, Razved. Okhr. Nedr., 199, no. 11, pp. 3–8.

  • Ezhova, M.P. and Polyakov, V.A., Method of search for kimberlites in the areas of manifestation of kimberlite magmatism, No. SU 970 986, Izobret. USSR, 1981.

    Google Scholar 

  • Frolov, A.A., Lapin A.V., Tolstov, A.V., et al., Karbonatity i kimberlity (vzaimootonosheniya, minerageniya, prognoz) (Carbonatites and Kimberlites (Relationships, Metallogeny, and Prediction), Moscow: NIA-Priroda, 2005.

    Google Scholar 

  • Gladkov, A.S., Bornyakov, S.A., Manakov, A.V., et al., Tektonofizicheskie issledovaniya pri almazopoiskovykh rabotakh: metodicheskoe posobie (Tectonophysical Studies during Diamond Exploration: Methodical Textbook), Moscow: Nauchnyi mir, 2008.

    Google Scholar 

  • Glavatskikh, S.P., Geochemical Criteria and Methods of Prospecting of Diamond Kimberlites: Eivdence from the Arkhangelsk Diamond Province, Extended Abstract of Candidate (Geol.-Min) Dissertation, Moscow, 1992.

    Google Scholar 

  • Grzymko, T.J., Marcantonio, B.A., McKee, C.M., et al., Temporal variability of uranium concentrations and 234U/238U activity ratios in the Mississippi river and its tributaries, Chem. Geol., 2007, vol. 243, pp. 344–356.

    Article  Google Scholar 

  • Gubaidullin, M.G., Geoekologicheskie usloviya osvoeniya mineral’no-syr’evykh resursov Evropeiskogo Severa Rossii (Geoecological Conditions of the Development of Mineral–Raw Material Resources of the European North Russia), Arkhangel’sk: PGU im. M.V. Lomonosova, 2002.

    Google Scholar 

  • Ignatov, P.A., Bolonin, A.V., Kalmykov, B.A., et al., Paleotectonic structures of the Zimnii Bereg diamond district, Byull. Mosk. O-va Ispyt. Prir., Otd. Geol., 2008, no. 3, pp. 13–20.

    Google Scholar 

  • Ignatov, P.A., Bolonin, A.V., Vasil’ev, I.D., et al., Fold and fault deformations in host and overlying sequences in quarry of the Arkhangel’skaya kimberlite pipe, Rudy Met., 2012, no. 1, pp. 42–48.

    Google Scholar 

  • Ignatov, P.A., Novikov, K.V., Bushkov, K.Yu., et al., Reconstruction of fault kinematics on unexposed territories on the basis of analysis of miccrodeformations in core, Geol. Razved. Izv. Vyssh. Uchebn. Zaved., 2011, no. 3, pp. 55–60.

    Google Scholar 

  • Ignatov, P.A., Shtein, Ya.I., Chernyi, S.D., et al., New methods of assessment of local areas for bedrock diamond deposits, Rudy Met., 2001, no. 5, pp. 32–43.

    Google Scholar 

  • Ignatov, P.A., Zaripov, N.R., Kim, V., et al., Types of the diamond-bearing bleached Vendian–of the Zimnii district, Arkhangelsk region, Geol. Razved. Izv. Vyssh. Uchebn. Zaved., 2015, no. 2, pp. 15–21.

    Google Scholar 

  • Kharkiv, A.D., Zinchuk, N.N., and Kryuchkov, A.I., Korennye mestorozhdeniya almazov mira (Bedrock Diamond Deposits around the World), Moscow: Nedra, 1998.

    Google Scholar 

  • Kiselev, G.P., Fiziko-matematicheskaya model' dinamiki izotopnoi pary urana iz porody v meteogennuyu vodu v ekzogennoi zone (Physicochemical Model of Dynamics of Isotope Uranium Pair from Rock into Meteoric Water in the Exogenic Zone), Yekaterinburg: UrO RAN, 1996, pp. 234–238.

    Google Scholar 

  • Kiselev, G.P., Uranium isotopes in geosphere, Tezisy dokladov XV Simpoziuma po geokhimii izotopov im. 24-27 noyabrya 1998 (Proceedings of 15th Akademika A.P. Vinogradova Symposium on Isotope Geochemistry), Moscow, 1998, pp. 123–124.

    Google Scholar 

  • Kiselev, G.P., Chetnye izotopy urana v geosfere (Even Uranium Isotopes in Geosphere), Yekaterinburg: UrO RAN, 1999.

    Google Scholar 

  • Kiselev, G.P., Prediction of the Mineral Deposits and Environmental Pollution by Uranium–Isotope Methods, Extended Abstract of Doctoral (Geol.-Min.) Dissertation, Arkhangel’sk: IEPS UrO RAN, 2005.

    Google Scholar 

  • Kiselev, G.P. and Zykov, S.B., Studies of the Cherdyntsev–Chalov effect. Problems and Prospects, Radioaktivnost’ i radioaktivnye elementy v srede obitaniya cheloveka: Mater. IV Mezhdunar. Konf. (Radioactivity and Radioactive Elements in the Human Environment. Proceedings of 4th International Conference),Tomsk, 2013, pp. 275–278.

    Google Scholar 

  • Koide, M. and Golberg, E., 234U/238U ratio in sea water, Progr. Oceanography, 1965, vol. 3, p. 173.

    Article  Google Scholar 

  • Kontarovich, R.S. and Tsyganov, V.A., Problems and prospects of the development of geophysical technology in searching diamond bedrock deposits, Geofizika, 2000, no. 4, pp. 52–57.

    Google Scholar 

  • Korotkov, Yu.V., On question of distinguishing and tracing of faults from characteristic changes of conductivity in sedimentary sequence, Geofiz. Issled., 2011, vol. 12, no. 4, pp. 81–92.

    Google Scholar 

  • Kutinov, Yu.G., Structural–tectonic control of the Zimnii Bereg explosive bodies: airborne electromagnetic survey data, Izv. Vyssh. Uchebn. Zaved., Geol. Razved., 1991, no. 6, pp. 118–121.

    Google Scholar 

  • Kutinov, Yu.G. and Chistova, Z.B., Ierarkhicheskii ryad proyavlenii shchelochno-ul’traosnovnogo magmatizma Arkhangel’skoi almazonosnoi provintsii. Ikh otrazhenie v geologo-geofizicheskikh materialakh (Hierarchical Series of Manifestation of Alkaline–Ultrabasic Magmatism of the Arkhangelsk Diamond Province. Their Reflection in Geological–Geophysical Materials), Arkhangel’sk: IEPS UrO RAN, IPP “Pravda Severa”, 2004.

    Google Scholar 

  • Lapin, A. V. and Tolstov, A.V., Geochemical types of kimberlites, Shchelochnoi magmatizm i ego rudonosnost' (Alkaline Magmatism and its Ore Potential), Kiev: Logos, 2007, pp. 139–142.

    Google Scholar 

  • Luo, S., Ku, T., Roback, R., et al., In-situ radionuclide transport and preferential groundwater flows at Ineel (Idaho): decay-series disequilibrium studies, Geochim Cosmochim Acta, 2000, vol. 64, no. (5), pp. 867–881.

    Article  Google Scholar 

  • Lutt, B.G. and Mineeva, I.G., Uranium and thorium in kimberlites of Siberia, Geochem. Int., 1973, no. 11, pp. 1721–1724.

    Google Scholar 

  • Magomedova, A.Sh. and Udoratin, V.V., Volume activity of radon in explosion pipes and magnetic anomalies of Middle Timan, Mater. XVII Ural’skoi molodezhnoi nauchnoi shkoly po geofizike (proceedings of 17th Uralian Youth Conference of Scientific School on Geophysics), Yekaterinburg: IGF UrO RAN, 2016, pp. 110–112.

    Google Scholar 

  • Magomedova, A.Sh., Udoratin, V.V., and Ezimova, Yu.E., Reflection of fault zones and explosion pipes of the Middle Timan in geophysical fields, Vestn. Inst, Geol. Komi NTs UrO RAN, 2015, no. 10, pp. 28–34.

    Google Scholar 

  • Maher, K. and DePaolo, J.C., and Lin, Jo-Chiu-Fang, Rates of silicate dissolution in deep-sea sediment: in situ measurement using U234/U238 of pore fluids, Geochim Cosmochim Acta, 2004, vol. 68, no. 22, pp. 4629–4648.

    Article  Google Scholar 

  • Maher, K., DePaolo, J.C., and Christensen, J.N., U-Sr isotopic speedometer: fluid flow and chemical weathering rates in aquifers, Geochim Cosmochim Acta, 2006, vol. 70, pp. 4417–4435.

    Article  Google Scholar 

  • Makhotkin, I.L., Robi, D., Kurszlaukis, S.I., et al., Age and model of formation of pipes of the Lomonosovskoe diamond deposit, Arkhangelsk region, northwestern Russia, Mater. konf. MINEX FORUM Severo-Zapad 2007 (Proceedins of Conference MINEX FORUM Northwest 2007), Petrozavodsk (elektron publication), 2007

    Google Scholar 

  • McDowall, G. and Koketso, H., Radon emanometry over some kimberlites and lamproites in Southern and Western Botswana, 53rd EAEG Meeting. 1991. DOI: doi 10.3997/2214-4609.201410794

    Google Scholar 

  • Metodicheskoe rukovodstvo po uran-izotopnomu modelirovaniyu dinamiki podzemnykh vod v usloviyakh aktivnogo vodoobmena (Methodical Guide on Uranium–Isotope Modeling of Groundwater Dynamics under Active Water Exchange Conditions), Bishkek: Ilim, 1991.

  • Metodika izmerenii udel’noi aktivnosti izotopov urana (238U, 234U, 235U) v probakh pochv, gruntov, donnykh otlozhenii, gornykh porod i stroitel’nykh materialov na ikh osnove al’faspektrometricheskim metodom s radiokhimicheskoi podgotovkoi (Technique of Measurement of Specific Activity of Uranium Isotopes (238U, 234U, 235U) in Samples of Soils, Grounds, Bottom Sediments, Rocks, and Building Materials on their Basis using Alfa-Spectrometric Method with Radiochemical Preparation), Moscow: FGUP “VIMS”, 2013.

  • Mwenifumbo, C.J. and Kjarsgaard, B.A., Gamma-ray logging and radioelement distribution in the Fort de la Corne kimberlite pipe 169, Explor. Mining Geol., 1999, no. 8 (12), pp. 137–147.

    Google Scholar 

  • Osmond, J.K., Rydell, H.S., and Kaufman, M.I., Uranium disequilibrium in groundwater: an isotope dilution approach in hydrologic investigations, Science, 1968, vol. 162, no. (3857), pp. 997–999.

    Article  Google Scholar 

  • Paul, D.K., Gale, N.H., and Harris, P.G., Uranium and thorium abundances in Indian kimberlites, Geochim. Cosmochim. Acta, 1977, no. 41 (2), pp. 335–339.

    Article  Google Scholar 

  • Ramadass, G., Subhashbabu, A., and Udaya Laxmi, G., Structural analysis of airborne radiometric data for identification of kimberlites in parts of eastern Dharwar Craton, Int. J. Sci. Res., 2015, vol. 4, no. 4, pp. 2375–2388.

    Google Scholar 

  • Rasskazov, S.V., Chebykin, E.P., Il’yasova, A.M., et al., Identification of flowing crustal deformations in the Tunka valley from manifestation of the Chalov–Cherdyntsev effect in groundwaters, Vestn. Kaf. Geograf. VSGAO, 2014, no. 4 (11), pp. 70–78.

    Google Scholar 

  • Riotte, J. and Chabaux, F., (234U/238U) activity ratios in freshwaters as tracers of hydrological processes: the Strengbach watershed (Vosges, France), Geochim. Cosmochim. Acta, 1999, vol. 63, no. (9), pp. 1263–1275.

    Article  Google Scholar 

  • Roback, R.C., Johnson, T.M., McLing, T.L., et al., Uranium isotopic evidence for groundwater chemical evolution and flow patterns in the eastern Snake River plain aquifer, Idaho, Geol. Soc. Am. Bull., 2001, vol. 113, no. 9, pp. 1133–1141.

    Article  Google Scholar 

  • Rybal’chenko, A.Ya., Rybal’chenko, T.M., and Silaev, V.I., Theoretical principles of prediction and search for bedrock diamond deposits of tuffisite type, Izv. Komi Nauchn. Ts UrO RAN, Vol. 1, no. 5, 2011, pp. 54–66.

    Google Scholar 

  • Sablukov S.M. Some peculiarities of the inner structure of kimberlitic pipes, Trudy TsNIGRI, 1987, vol. 218, pp. 37–41.

    Google Scholar 

  • Scott, Smith B.H., Nowicki, T.E., Russell, J.K., et al., Kimberlite terminology and classification, Proceedings of 10th International Kimberlite Conference, 2013, vol. 2, pp. 1–17

    Google Scholar 

  • Shirobokov, V.N., Some peculiarities of deep-seated structure of the Zimnii Bereg diamond district, Razv. Okhr. Nedr., 1997, no. 5, pp. 21–25.

    Google Scholar 

  • Shpilevaya, D.V., Geological Structure, Mineral Composition, and Ecological–Economic Aspects of the Exploration of the Arkhangelskaya Pipe: Lomonosov Diamond Deposit, Extended Abstract of Candidate (Geol.-Min.) Dissertation, Moscow, 2008.

    Google Scholar 

  • Smyslov, A.A., Uran i torii v zemnoi kore (Uranium and Thorium in the Earth Crust), Leningrad: Nedra, 1974.

    Google Scholar 

  • Stankovskii, A.F., Vendian of the southeastern White Sea region, Razved. Okhr. Nedr., 1997, no. 5, pp. 4–9.

    Google Scholar 

  • Stognii, V.V. and Korotkov, Yu.V., Poisk kimberlitovykh tel metodom perekhodnykh protsessov (Search for Kimberlite Bodies by Method of Transitional Processes), Novosibirsk: Malotirazhnaya tipografiya 2D, 2010.

    Google Scholar 

  • Tikhonov, A.I., Neravnovesnyi uran v usloviyakh aktivnogo vodoobmena i ego ispol’zovanie v geologii i gidrogeologii (Disequilibrium Uranium under Conditions of Active Water Exchange and its Application in Geology and Hydrogeology), Cheboksary: Izd-vo L. A. Naumova, 2009.

    Google Scholar 

  • Tikhonov, A.I., Tikhonov, V.P., Vasil’ev, A.V., et al., Application of uranium–isotopic method for revealing active areas of deep-seated faults on the Russian Platform and assessment of their influence on the ecological state of groundwaters, Ural’sk. Geofiz. Vestn., 2006, no. 9, pp. 63–68.

    Google Scholar 

  • Tikhonov, A.I., Tikhonov, V.P., Vasil’ev, A.V., et al., Revealing of potentially diamond area in the northern Volga Uplift from isotopic-geochemical data, Ural’sk. Geofiz. Vestn., 2005 (a), no. 8, pp. 59–62.

    Google Scholar 

  • Tikhonov, A.I., Tikhonov, V.P., Vasil’ev, A.V., et al., Isotopic–hydrogeochemical studies of the diamond prospects of the Karlin dislocations of Chuvashia, Otechestvennaya Geol., 2005 (b), no. 4, pp. 23–29.

    Google Scholar 

  • Tsyganov, V.A., Kontarovich, R.S., Mogilevskii, V.E., et al., Modern airborne geophysical technologies as basis for geological and prediction–metallogenic maps of new generation, Kongress vypusknikov geologicheskogo fakul’teta MGU 26 maya 2004 g. Sb. nauchnykh trudov (Congress of the Graduate Students of the Geological Faculty of the Moscow State University. A Collection of Papers), Khmelevskii, V.K., Eds., Moscow: Mosk. Gos. Univ., 2004, pp. 151–158.

  • Vasil’ev, I.D., Geological Structures in the Wall Rocks of the Arkhangel’skaya Pipe and their Application for Prospecting of Bedrock Diamond Deposits in the Zimnii Bereg District, Extended Abstract of Candidate (Geol-Min) Dissertation, Moscow: MGRI-RGGRU, 2010.

    Google Scholar 

  • Verzhak, V.V., Minchenko, G.V., Larchenko, V.A., et al., Diamond prospecting experience in the Arkhangelsk Diamond Province and Adjacent Territories of the northern East European Platform, Problemy prognozirovaniya i poiskov mestorozhdenii almazov na zakrytykh territoriyakh: Mater. konf., posvyashch. 40-letiyu YaNIGP TsNIGRI AK “ALROSA” (Problems of Prediction and Search for Diamond Deposits on Unexposed Territories Dedicated to 40th Anniversary of YaNIGP TsNIGRI AK “ALROSA”) Yakutsk: YaNTs SO RAN, 2008, pp. 308–314.

    Google Scholar 

  • Vosel, Yu.S., Uranium Geochemistry in the Modern Carbonate Deposits of Minor Lakes (Species and 234U/238U isotope ratios), Extended Abstract of Candidate (Geol-Min) Dissertation, Novosibirsk, 2016. 128 s.

    Google Scholar 

  • Yakovlev, E.Yu., Kiselev, G.P., Druzhinin, S.V., et al., Radiometric and seismometric studies of the Chidvinskaya kimberlite pipe (Arkhangel’skdiamond province), Molodye–naukam o Zemle: Mater. VIII Mezhdunar. nauch. Konf. (Young to the Earth’s Sciences: Proceedings of 8th International Conference), Moscow: MGRI-RGGRU, 2016(a), pp. 163–165.

    Google Scholar 

  • Yakovlev, E.Yu., Kiselev, G.P., and Druzhinin, S.V., Disequilibrium uranium in kimberlites and host rocks of the Pionerskaya Pipe, Lomonosov deposit, Vestn. SAFU, Ser. Estestven. Nauki, 2016 (b), no. 1, pp. 19–28.

    Google Scholar 

  • Zaripov, N.R., First data on radiation defects in the sedimentary rocks of the Zimii Bereg district, Arkhangelsk region, Nauki o Zemle. Sovremennoe sostoyanie: Mater. II Vseross. molodezhnoi nauch.-prakt. shkoly-konf (Earth’s Sciences. Modern State. Proceedings of 2nd All-Russian Youth Scientific–Practical School–Conference), Novosibirsk: NGU, 2014.

    Google Scholar 

  • Zverev, V.L., Kravtsov, A.I., Ilupin, I.P., et al., Uranium isotopes in the kimberlite magmatism of East Siberia, Dokl. Akad. Nauk SSSR, 1979, vol. 245, no. 4, pp. 946–950.

    Google Scholar 

  • Zverev, V.L., Semenov, G.S., Spiridonov, A.I., et al., Separation of uranium isotopes during kimberlite magmatism, Geokhimiya, 1976, no. 12, pp. 1884–1886.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Yu. Yakovlev.

Additional information

Original Russian Text © G.P. Kiselev, E.Yu. Yakovlev, S.V. Druzhinin, A.S. Galkin, 2017, published in Geologiya Rudnykh Mestorozhdenii, 2017, Vol. 59, No. 5, pp. 401–418.

† Deceased.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kiselev, G.P., Yakovlev, E.Y., Druzhinin, S.V. et al. Distribution of radioactive isotopes in rock and ore of Arkhangelskaya pipe from the Arkhangelsk diamond province. Geol. Ore Deposits 59, 391–406 (2017). https://doi.org/10.1134/S1075701517050014

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1075701517050014

Navigation