Log in

Thermodynamics of arsenates, selenites, and sulfates in the oxidation zone of sulfide ores. IX. Physicochemical formation conditions and thermal stability of zinc selenites

  • Published:
Geology of Ore Deposits Aims and scope Submit manuscript

Abstract

The aim of this study is to create a physicochemical analysis of the formation conditions of synthetic zinc selenite, ZnSeO3 · 2H2O and an experimental investigation of its thermal stability, dehydration, and dissociation. This study has been carried out using a comprehensive thermal analysis (thermogravimetry and differential scanning calorimetry) within the temperature interval from 25–600°C. It has been established that ZnSeO3 · 2H2O dehydrates at 81–222°C through four stages corresponding to the formation of intermediate hydrate species: ZnSeO3 · 5/3H2O, ZnSeO3 · H2O, and ZnSeO3 · 1/3H2O. It is suggested that under natural oxidation conditions zinc selenite precipitates as stable (ZnSeO3 · 2H2O) or metastable (ZnSeO3 · H2O) species. Anhydrous ZnSeO3 presumably exists at a higher temperature (up to 479°C) and breaks down within a temperature interval of 479–597°C to form ZnO and SeO2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • De Camargo, W. and Svisero, D., Crystallography of zinc selenite dihydrate Acta Cryst., 1968, Bd. 24, S. 461–462.

    Article  Google Scholar 

  • Charykova, M.V., Krivovichev, V.G., Yakovenko, O.S., et al., Thermodynamics of arsenates, selenites, and sulfates in the oxidation zone of sulfide ores: VI. Solubility of synthetic analogs of ahlfeldite and cobaltomenite at 25°C, Geol. Ore Deposits, 2012, vol. 54, spec. issue 8 (Zapiski of the Russian Mineralogical Society), pp. 638–646.

    Article  Google Scholar 

  • Chukhlantsev, V.G., Solubility product of selenite of some metals, Zh. Neorg. Khimii, 1956, vol. 1, no. 10, pp. 2300–2305.

    Google Scholar 

  • Engelen, B., Baumer, U., Hermann, B., et al., Polymorphie und Pseudo-Symmetrie der Hydrate MSeO3 · H2O (M = Mn, Co, Ni, Zn, Cd), Z. Anorg. Allg. Chem., 1996, vol. 622, pp. 1886–1892.

    Article  Google Scholar 

  • Fokina, E.L., Klimova, E.V., Charykova, M.V., et al., Thermodynamics of arsenates, selenites, and sulfates in the oxidation zone of sulfide ores: VIII. Field of thermal stability of synthetic analog of chalcomenite and its dehydration and dissociation, Geol. Ore Deposits, 2014, vol. 56, spec. issue 7 (Zapiski of the Russian Mineralogical Society), pp.

  • Gladkova, V.F. and Kondrashova, Yu.D., Crystal structure of ZnSeO3 · 2H2O, Kristallografiya, 1964, vol. 9, pp. 190–196.

    Google Scholar 

  • Gospodinov, G.G., Physicochemical investigation of the ZnO-SeO2-H2O system and some properties of the compounds, Thermochimica Acta, 1984, vol. 77, pp. 439–444.

    Article  Google Scholar 

  • Krivovichev, V.G., Charykova, M.V., Yakovenko, O.S., and Depmeier, W., Thermodynamics of arsenates, selenites, and sulfates in the oxidation zone of sulfide ores: IV. Eh-pH diagrams of the Me-Se-H2O systems (Me = Co, Ni, Fe, Cu, Zn, Pb) at 25°C, Geol. Ore Deposits, 2011, vol. 53, spec. issue 7 (Zapiski of the Russian Mineralogical Society), pp. 514–527.

    Article  Google Scholar 

  • Krivovichev, S.V. and Filatov, S.K., Kristallokhimiya mineralov i neorganicheskikh soedinenii s kompleksami anionotsentrirovannykh tetraedrov (Crystal Chemistry of Minerals and Inorganic Compounds with Anion-Centered Tetrahedra), St. Petersburg: St. Petersburg State Univ., 2001.

    Google Scholar 

  • Krivovichev, V.G., Tarasevich, D.A., Charykova, M.V., et al., Thermodynamics of arsenates, selenites, and sulfates in the oxidation zone of sulfide ores: V. Chalcomenite and its synthetic analog, properties, and formation conditions, Geol. Ore Deposits, 2012, vol. 54, spec. issue 7 (Zapiski of the Russian Mineralogical Society), pp. 498–502.

    Article  Google Scholar 

  • Kumok, V.N., Kuleshova, O.M., and Karabin, L.A., Proizvedeniya rastvorimosti (Products of Solubility), Novosibirsk, 1983.

    Google Scholar 

  • Leshchinskaya, Z.L. and Selivanova, N.M., Formation heat of zinc selenite (ZnSeO3 · H2O), Zh. Fiz. Khimii, 1964, vol. 38, pp. 972–974.

    Google Scholar 

  • Lieder, O.J. and Gattow, G., Synthetic crystals, Naturwissenschaften, 1967, vol. 54, p. 443.

    Article  Google Scholar 

  • Markovsky, L.Ya. and Sapozhnikov, Yu.P., Various species and some properties of intermediate selenium-acid zinc, Zh. Strukt. Khimii, 1960, vol. 1, pp. 346–352.

    Google Scholar 

  • Masson, M.R., Lutz, H.D., and Engelen, B. Sulfites, Selenites, and Tellurites. Vol. 26, IUPAC Solubilities Data Series, Oxford: Pergamon Press, 1986( cited after Olin et al., 2005).

    Google Scholar 

  • Olin, A., Nolang, B., Osadchii, E. G., et al., Chemical Thermodynamics of Selenium, Amsterdam: Elsevier, 2005.

    Google Scholar 

  • Sapozhnikov, Yu.P. and Markovsky, L.Ya., Determination of formation enthalpies of various phases of zinc, cadmium, and mercury selenites, in Khimiya i tekhnologiya lyuminoforov (Chemistry and Technology of Luminophores), Markovsky, L.Ya. Ed, Leningrad: GIPKh, 1966.

    Google Scholar 

  • Šeby, F., Potin-Gautier, M., and Giffaut, E., A critical review of thermodynamic data for selenium species at 25°C, Chem. Geol., 2001, vol. 171, pp. 173–194.

    Article  Google Scholar 

  • Sharmasarkar, S., Reddy, K. J., and Vance, G. F. Preliminary quantification of metal selenite solubility in aqueous solutions, Chem. Geol., 1996. vol. 132, pp. 165–170.

    Article  Google Scholar 

  • Termicheskie konstanty veshchestv (Thermal Constants of Compounds), Glushko, V.P, Ed., Moscow: Acad Sci. USSR, 1965–1982, vol. 1–10.

    Google Scholar 

  • Vlaev, L.T., Genieva, S.D., and Georgieva, V.G. Study of the crystallization fields of nickel(II) selenites in the NiSeO3-SeO2-H2O system, J. Therm. Anal. Calorim., 2006, vol. 86, pp. 449–456.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Charykova.

Additional information

Original Russian Text © M.V. Charykova, E.L. Fokina, E.V. Klimova, V.G. Krivovichev, V.V. Semenova, 2013, published in Zapiski Rossiiskogo Mineralogicheskogo Obshchestva, 2013, No. 5, pp. 11–20.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Charykova, M.V., Fokina, E.L., Klimova, E.V. et al. Thermodynamics of arsenates, selenites, and sulfates in the oxidation zone of sulfide ores. IX. Physicochemical formation conditions and thermal stability of zinc selenites. Geol. Ore Deposits 56, 546–552 (2014). https://doi.org/10.1134/S1075701514070046

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1075701514070046

Keywords

Navigation