Log in

Deep Eutectic Solvent-Assisted Synthesis of Thiopyrans from β-Oxodithioesters (β-ODE) and Their Antibacterial Properties

  • Published:
Russian Journal of Organic Chemistry Aims and scope Submit manuscript

Abstract

The use of biodegradable and recyclable deep eutectic solvent (DES) based on choline chloride and urea for the synthesis of 4H-thiopyrans has been reported. The reaction proceeds efficiently under mild conditions without the use of an additional catalyst with better yields. The ease of recovery and reusability of solvent with consistent activity makes this method efficient and environmentally benign. This method is also energy efficient and easy to handle. The synthesized compounds were evaluated for antibacterial activities. The highest antibacterial activity against the tested bacteria Escherichia coli, Bacillus subtilis, Staphylococcus aureus, and Salmonella typhi was observed for 2-amino-5-(4-chlorobenzoyl)-4-(4-chlorophenyl)-6-(methylsul­fanyl)-4H-thiopyran-3-carbonitrile.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme
Scheme
Scheme
Fig. 1.
Fig. 2.
Fig. 3.

REFERENCES

  1. Bose, A.K., Pednekar, S., Ganguly, S.N., and Chakra­borty, G., Tetrahedron Lett., 2004, vol. 45, p. 8351. https://doi.org/10.1016/j.tetlet.2004.09.064

    Article  CAS  Google Scholar 

  2. Duan, H., Wang, D., and Li, Y., Chem. Soc. Rev., 2015, vol. 44, p. 5778. https://doi.org/10.1039/C4CS00363B

    Article  CAS  PubMed  Google Scholar 

  3. Paiva, A., Craveiro, R., Aroso, I., Martins, M., Reis, R.L., and Duarte, A.R.C., ACS Sustainable Chem. Eng., 2014, vol. 2, p. 1063. https://doi.org/10.1021/sc500096j

    Article  CAS  Google Scholar 

  4. Pawar, P.M., Jarag, K.J., and Shankarling, G.S., Green Chem., 2011, vol. 13, p. 2130. https://doi.org/10.1039/c0gc00712a

    Article  CAS  Google Scholar 

  5. Chen, Z., Zhu, W., Zheng, Z., and Zou, X., J. Fluorine Chem., 2010, vol. 131, p. 340. https://doi.org/10.1016/j.jfluchem.2009.11.008

    Article  CAS  Google Scholar 

  6. Wang, H., **g, Y., Wang, X., Yao, Y., and Jia, Y., J. Mol. Liq., 2012, vol. 170, p. 20. https://doi.org/10.1016/j.molliq.2012.03.017

    Article  CAS  Google Scholar 

  7. Ramesh, S., Shanti, R., and Morris, E., J. Mol. Liq., 2012, vol. 166, p. 40. https://doi.org/10.1016/j.molliq.2011.11.010

    Article  CAS  Google Scholar 

  8. Vedejs, E. and Krafft, G.A., Tetrahedron, 1982, vol. 38, p. 2857. https://doi.org/10.1016/0040-4020(82)85013-8

    Article  CAS  Google Scholar 

  9. Ingall, A.H., Comprehensive Heterocyclic Chemistry II, Katritzky, A.R., Rees, C.W., Scriven, E.F.V., Eds., Oxford: Pergamon, 1996, vol. 5, p. 501. https://doi.org/10.1016/B978-008096518-5.00113-1

  10. Mayer, R., Broy, W., and Zahradnik, R., Adv. Heterocycl. Chem., 1967, vol. 8, p. 219. https://doi.org/10.1016/S0065-2725(08)60608-X

    Article  CAS  Google Scholar 

  11. Hepworth, J.D., Gabbutt, C.D., and Heron, B.M., Com­prehensive Heterocyclic Chemistry II, Katritzky, A.R., Rees, C.W., and Scriven, E.F.V., Eds., Oxford: Pergamon, 1996, vol. 5, p. 301. https://doi.org/10.1016/B978-008096518-5.00110-6

  12. Singh, O.M., Devi, N.S., Thokchom, D.S., and Sharma, G.J., Eur. J. Med. Chem., 2010, vol. 45, p. 2250. https://doi.org/10.1016/j.ejmech.2010.01.070

    Article  CAS  PubMed  Google Scholar 

  13. Singh, O.M. and Devi, N.S., J. Org. Chem., 2009, vol. 74, p. 3141. https://doi.org/10.1021/jo802585b

    Article  CAS  PubMed  Google Scholar 

  14. Samuel, R., Chandran, P., Retnamma, S., Sasikala, K.A., Sridevi, N.K., Anabha, E.R., and Asokan, C.V., Tetra­hedron, 2008, vol. 64, p. 5944. https://doi.org/10.1016/j.tet.2008.04.036

    Article  CAS  Google Scholar 

  15. Srivastava, A., Shukla, G., Yadav, D., and Singh, M.S., Arkivoc, 2018, vol. 2018, part (ii), p. 81. https://doi.org/10.24820/ark.5550190.p010.069

    Article  CAS  Google Scholar 

  16. Srivastava, A., Shukla, G., and Singh, M.S., Tetrahedron, 2017, vol. 73, p. 879. https://doi.org/10.1016/j.tet.2016.12.073

    Article  CAS  Google Scholar 

  17. Yadav, D., Ansari, M.A., Kumar, M., and Singh, M.S., Adv. Synth. Catal., 2020, vol. 362, p. 512. https://doi.org/10.1002/adsc.201901180

    Article  CAS  Google Scholar 

  18. Devi, L.R., Chanu, L.V., Choi, H., Lee, D., and Singh, O.M., Bull. Korean Chem. Soc., 2015, vol. 36, p. 2915. https://doi.org/10.1002/bkcs.10606

    Article  CAS  Google Scholar 

  19. Koley, S., Chanda, T., Ramulu, B.J., Chowdhury, S., and Singh, M.S., Adv. Synth. Catal., 2016, vol. 358, p. 1195. https://doi.org/10.1002/adsc.201500962

    Article  CAS  Google Scholar 

  20. Chanu, I.H., Devi, L.R., Khumanthem, N., Singh, N.I., Kumar, D., and Singh, O.M., Russ. J. Bioorg. Chem., 2017, vol. 43, p. 177. https://doi.org/10.1134/S1068162017020054

    Article  CAS  Google Scholar 

  21. Devi, K.A., Chanu, L.G., Chanu, I.H., and Singh, O.M., Lett. Org. Chem., 2014, vol. 11, p. 743. https://doi.org/10.2174/1570178611666140829220007

    Article  CAS  Google Scholar 

  22. Devi, N.S., Singh, T.P., Khumanthem, N., and Singh, O.M., Indian J. Chem., Sect. B, 2013, vol. 52, p. 1224.

    Google Scholar 

  23. Singh, T.P., Bhattarcharya, S., and Singh, O.M., Org. Lett., 2013, vol. 15, p. 1974. https://doi.org/10.1021/ol400644m

    Article  CAS  PubMed  Google Scholar 

  24. Chanu, L.V., Singh, T.P., Devi, L.R., and Singh, O.M., Green Chem. Lett. Rev., 2018, vol. 11, p. 352. https://doi.org/10.1080/17518253.2018.1510991

    Article  CAS  Google Scholar 

  25. Chanu, I.H., Devi, L.M., Singh, T.P., Singh, S.J., Singh, R.R., and Singh, O.M., ChemistrySelect, 2020, vol. 5, p. 7447. https://doi.org/10.1002/slct.202001807

    Article  CAS  Google Scholar 

  26. Devi, N.S., Singh, S.J., and Singh, O.M., Tetrahedron Lett., 2013, vol. 54, p. 1432. https://doi.org/10.1016/j.tetlet.2013.01.001

    Article  CAS  Google Scholar 

  27. Chowdhury, S., Chanda, T., Koley, S., Ramulu, B.J., Raghuvanshi, K., and Singh, M.S., Tetrahedron, 2014, vol. 70, p. 914. https://doi.org/10.1016/j.tet.2013.12.020

    Article  CAS  Google Scholar 

  28. Ohsugi, S., Nishide, K., and Node, M., Tetrahedron, 2003, vol. 59, p. 1859. https://doi.org/10.1016/S0040-4020(03)00179-0

    Article  CAS  Google Scholar 

  29. Chowdhury, S., Chanda, T., Koley, S., Anand, N., and Singh, M.S., Org. Lett., 2014, vol. 16, p. 5536. https://doi.org/10.1021/ol502850h

    Article  CAS  PubMed  Google Scholar 

  30. Bi, X., Dong, D., Li, Y., Liu, Q., and Zhang, Q., J. Org. Chem., 2005, vol. 70, p. 10886. https://doi.org/10.1021/jo052032g

    Article  CAS  PubMed  Google Scholar 

  31. Boullosa, S., Gándara, Z., Pérez, M., Gómez, G., and Fall, Y., Tetrahedron Lett., 2008, vol. 49, p. 4040. https://doi.org/10.1016/j.tetlet.2008.04.077

    Article  CAS  Google Scholar 

  32. Fang, L., David, C., Matthew, B., Ivy, L., and Jon, T.N., Angew. Chem., Int. Ed., 2012, vol. 51, p. 1938. https://doi.org/10.1002/anie.201108261

    Article  CAS  Google Scholar 

  33. Sethuraman, I., Subbu, P., and Menéndez, J.C., J. Org. Chem., 2010, vol. 75, p. 472. https://doi.org/10.1021/jo9021327

    Article  CAS  Google Scholar 

  34. Zhou, B., Wu, Q., Dong, Z., Xu, J., and Yang, Z., Org. Lett., 2019, vol. 21, p. 3594. https://doi.org/10.1021/acs.orglett.9b01003

    Article  CAS  PubMed  Google Scholar 

  35. Bodaghifard, M.A., Mobinikhaledi, A., and Asad­begi, S., Appl. Organomet. Chem., 2016, vol. 31, article ID e3557. https://doi.org/10.1002/aoc.3557

  36. Yarahmadi, H., Ghashang, M., Zare, S.J., and Khodaivandi, A., Phosphorus, Sulfur Silicon Relat. Elem., 2017, vol. 192, p. 945. https://doi.org/10.1080/10426507.2017.1295961

    Article  CAS  Google Scholar 

  37. Devi, T.J., Singh, T.P., Singh, R.R., Sharma, K.G., and Singh, O.M., Russ. J. Org. Chem., 2020, vol. 57, p. 255. https://doi.org/10.1134/S1070428021020172

    Article  Google Scholar 

  38. Abou-Shehada, S., Mampuys, P., Maes, B.U.W., Clark, J.H., and Summerton, L., Green Chem., 2017, vol. 19, p. 249. https://doi.org/10.1039/C6GC01928E

    Article  CAS  Google Scholar 

  39. Abbott, A.P., Capper, G., Davies, D.L., Rasheed, R.K., and Tambyrajah, V., Chem. Commun., 2003, no. 1, p. 70. https://doi.org/10.1039/B210714G

    Article  Google Scholar 

  40. Devi, N.S., Singh, S.J., and Singh, O.M., Tetrahedron Lett., 2013, vol. 54, p. 1432. https://doi.org/10.1016/j.tetlet.2013.01.001

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

L. M. Devi and T. L. Devi made equal contributions to this study.

Corresponding author

Correspondence to O. M. Singh.

Ethics declarations

The authors declare no conflict of interest.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Devi, L.M., Devi, T.L., Singh, N.K. et al. Deep Eutectic Solvent-Assisted Synthesis of Thiopyrans from β-Oxodithioesters (β-ODE) and Their Antibacterial Properties. Russ J Org Chem 59, 679–688 (2023). https://doi.org/10.1134/S1070428023040176

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070428023040176

Keywords:

Navigation