Log in

Study the Convective Heat Transfer Intensification by Using Nanotechnology: A Review

  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

Nanotechnology with its interdisciplinary nature is widely applicable to almost every facet of contemporary life, especially in the creation of nanomaterials and nanocomposites. The gas and oil industry uses nanofluids for a variety of purposes. By suspending nanoparticles in a base fluid, this method improves the fluid’s mechanical and thermal characteristics. Within the gas and oil sectors, nanofluids are using in hydraulic fracturing, increased oil recovery, drilling fluids, and heat transmission. Fluids utilized in these processes can be made more efficient in heat exchange, perform better as drilling fluids, extract more oil at higher rates, and maximize the efficiency of hydraulic fracturing operations by adding nanoparticles to the fluids. This paper reviews prospective applications of convective heat transfer optimization experimentally and numerically by employing hybrid nanofluid and nanofluids. Over the past twenty years, nanofluids have garnered a lot of attention. The dispersion of nanoparticles significantly enhanced the heat transfer characteristics of the current fluids. The current research also includes comparing the use of different types of nanoparticles and base fluids, methods for preparing nanofluid and hybrid nanofluids, studying their physical properties, and the effect of these properties on improving heat transfer. Many researchers around the world have investigated the feasibility of using nanofluids in various applications and equipment. This research summarizes current research in studies of nanofluids on the performance of convective heat transfer experimentally and numerically. Almost all previous studies have shown the preferred thermal behavior of nanofluids in thermal applications compared to the basic fluid. It also found that the hybrid use of nanoparticles is more efficient than the use of nanoparticles alone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Zheng, N., Yan, F., Zhang, K., Zhou, T., and Sun, Z., Appl. Therm. Eng., 2020, vol. 164, ID 114475. https://doi.org/10.1016/j.applthermaleng.2019.114475

    Article  Google Scholar 

  2. Ali, A.R.I. and Salam, B., SN Appl. Sci., 2020, vol. 2, ID 1636. https://doi.org/10.1007/s42452-020-03427-1

    Article  CAS  Google Scholar 

  3. Basher, N.A. and Abdulkhabeer, A., Mater. Today Proc., 2022, vol. 49, pt. 7, pp. 2842–2850. https://doi.org/10.1016/j.matpr.2021.10.069

    Article  CAS  Google Scholar 

  4. Ali, J.A., Kalhury, A.M., Sabir, A.N., Ahmed, R.N., Ali, N.H., and Abdullah, A.D., J. Pet. Sci. Eng., 2020, vol. 191, ID 107118. https://doi.org/10.1016/j.petrol.2020.107118

    Article  CAS  Google Scholar 

  5. Safaei, M.R., Mahian, O., Garoosi, F., Hooman, K., Karimipour, A., Kazi, S.N., and Gharehkhani, S., Sci. World J., 2014, vol. 2014, ID 740578. https://doi.org/10.1155/2014/740578

    Article  Google Scholar 

  6. Vanaki, S.M., Ganesan, P., and Mohammed, H.A., Renew. Sustain. Energy Rev., 2016, vol. 54, pp. 1212–1239. https://doi.org/10.1016/j.rser.2015.10.042

    Article  CAS  Google Scholar 

  7. Hassan, M., Sadri, R., Ahmadi, G., Dahari, M.B., Kazi, S.N., Safaei, M.R., and Sadeghinezhad, E., Entropy, 2013, vol. 15, no. 1, pp. 144–155. https://doi.org/10.3390/e15010144

    Article  CAS  Google Scholar 

  8. Choi, S.U.S. and Eastman, J.A., Enhancing Thermal Conductivity of Fluids with Nanoparticles, Argonne, IL: Argonne National Lab., 1995.

    Google Scholar 

  9. Karabulut, K., Buyruk, E., and Kilinc, F., J. Braz. Soc. Mech. Sci. Eng., 2020, vol. 42, no. 5, ID 230. https://doi.org/10.1007/s40430-020-02319-0

    Article  CAS  Google Scholar 

  10. ScienceDirect database. https://www.sciencedirect.com/.

  11. Pak, B.C. and Cho, Y.I., Exp. Heat Transf., 1998, vol. 11, no. 2, pp. 151–170. https://doi.org/10.1080/08916159808946559

    Article  CAS  Google Scholar 

  12. Zouli, N., Said, I.A., and Al-Dahhan, M., J. Nanofluids, 2019, vol. 8, no. 5, pp. 1103–1122. https://doi.org/10.1166/jon.2019.1653

    Article  Google Scholar 

  13. Rasheed, A.H., Alias, H.B., and Salman, S.D., Int. J. Therm. Sci., 2020, vol. 159, ID 106547, 2021, https://doi.org/10.1016/j.ijthermalsci.2020.106547

    Article  CAS  Google Scholar 

  14. Abreu, B., Lamas, B., Fonseca, A., Martins, N., and Oliveira, M.S.A., Heat Mass Transfer, 2014, vol. 50, pp. 65–74. https://doi.org/10.1007/s00231-013-1226-8

    Article  CAS  Google Scholar 

  15. Sivakumar, A., Alagumurthi, N., and Senthilvelan, T., Int. J. Heat Technol., 2015, vol. 33, no. 1, pp. 155–160. https://doi.org/10.18280/ijht.330121

    Article  Google Scholar 

  16. Bakthavatchalam, B., Habib, K., Saidur, R., Saha, B.B., and Irshad, K., J. Mol. Liq., 2020, vol. 305, ID 112787. https://doi.org/10.1016/j.molliq.2020.112787

    Article  CAS  Google Scholar 

  17. Momin, G.G., Int. J. Sci. Technol. Res., 2013, vol. 2, no. 12, pp. 195–202.

    Google Scholar 

  18. Suresh, S., Venkitaraj, K.P., Hameed, M.S., and Sarangan, J., J. Nanosci. Nanotechnol., 2014, vol. 14, no. 3, pp. 2563–2572. https://doi.org/10.1166/jnn.2014.8467

    Article  CAS  PubMed  Google Scholar 

  19. Ramadhan, A.I., Azmi, W.H., Mamat, R., and Hamid, K.A., Case Stud. Therm. Eng., 2020, vol. 22, ID 100782. https://doi.org/10.1016/j.csite.2020.100782

    Article  Google Scholar 

  20. Ismail, I.A., Yusoff, M.Z., Ismail, F.B., and Gunnasegaran, P., AIP Conf. Proc., 2018, vol. 2035, ID 040006. https://doi.org/10.1063/1.5075570

    Article  CAS  Google Scholar 

  21. Li, H., Ha, C.-S., and Kim, I., Nanoscale Res. Lett., 2009, vol. 4, no. 11, pp. 1384–1388. https://doi.org/10.1007/s11671-009-9409-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Xuan, Y. and Li, Q., J. Heat Transfer, 2003, vol. 125, no. 1, pp. 151–155. https://doi.org/10.1115/1.1532008

    Article  CAS  Google Scholar 

  23. Lee, J.-H., Hwang, K.S., Jang, S.P, Lee, B.H., Kim, J.H., Choi, S.U.S., and Choi, C.J., Int. J. Heat Mass Transf., 2008, vol. 51, nos. 11–12, pp. 2651–2656. https://doi.org/10.1016/j.ijheatmasstransfer.2007.10.026

    Article  CAS  Google Scholar 

  24. Sundar, L.S., Sharma, K.V., Singh, M.K., and Sousa, A.C.M., Renew. Sustain. Energy Rev., 2017, vol. 68, pp. 185–198. https://doi.org/10.1016/j.rser.2016.09.108

    Article  CAS  Google Scholar 

  25. Pastoriza-Gallego, M.J., Lugo, L., Legido, J.L., and Piñeiro, M.M., Nanoscale Res. Lett., 2011, vol. 6, no. 1, pp. 1–11. https://doi.org/10.1186/1556-276X-6-221

    Article  CAS  Google Scholar 

  26. Choi, S.U., Nanofluid technology: To be presented at the second Korean-American scientists and engineers association research, Technology, 1998.

  27. Kakaç, S. and Pramuanjaroenkij, A., Int. J. Heat Mass Transfer., 2009, vol. 52, no. 13–14, pp. 3187–3196. https://doi.org/10.1016/j.ijheatmasstransfer.2009.02.006

    Article  CAS  Google Scholar 

  28. Zouli, N., Enhancement of Heat Transfer Coefficient Using Nanofluids for Enhancement of Heat Transfer Coefficient Using Nanofluids for Multi-stage Flash Desalination (MSF) Plant, Doctoral Dissertation, 2018. https://scholarsmine.mst.edu/doctoral_dissertations/3120

  29. Narankhishig, Z., Ham, J., Lee, H., and Cho, H., Appl. Therm. Eng., 2021, vol. 193, ID 116987. https://doi.org/10.1016/j.applthermaleng.2021.116987

    Article  CAS  Google Scholar 

  30. Esfe, M.H., Bahiraei, M., Hajbarati, H., and Valadkhani, M., Appl. Therm. Eng., 2020, vol. 178, ID 115487. https://doi.org/10.1016/j.applthermaleng.2020.115487

    Article  CAS  Google Scholar 

  31. Mohammadpoor, M., Sabbaghi, S., Zerafat, M.M., and Manafi, Z., Int. J. Refrig., 2019, vol. 99, pp. 243–250. https://doi.org/10.1016/j.ijrefrig.2019.01.012

    Article  CAS  Google Scholar 

  32. Mohammed, H.A., Al-Aswadi, A.A., Shuaib, N.H., and Saidur, R., Renew. Sustain. Energy Rev., 2011, vol. 15, no. 6, pp. 2921–2939. https://doi.org/10.1016/j.rser.2011.02.019

    Article  CAS  Google Scholar 

  33. Hameed, A., Mukhtar, A., Shafiq, U., Qizilbash, M., Khan, M.S., Rashid, T., Bavoh, C.B., Rehman, W.U., and Guardo, A., J. Mol. Liq., 2019, vol. 277, pp. 812–824. https://doi.org/10.1016/j.molliq.2019.01.012

    Article  CAS  Google Scholar 

  34. Solangi, K.H., Kazi, S.N., Luhur, M.R., Badarudin, A., Amiri, A., Sadri, R., Zubir, M.N.M., Gharehkhani, S., and Teng, K.H., Energy, 2015, vol. 89, pp. 1065–1086. https://doi.org/10.1016/j.energy.2015.06.105

    Article  CAS  Google Scholar 

  35. Muruganandam, M. and Mukesh Kumar, P.C., Mater. Today Proc., 2020, vol. 21, pt. 1, pp. 248–252. https://doi.org/10.1016/j.matpr.2019.05.411

    Article  CAS  Google Scholar 

  36. Choi, C., Yoo, H.S., and Oh, J.M., Curr. Appl. Phys., 2008, vol. 8, no. 6, pp. 710–712, https://doi.org/10.1016/j.cap.2007.04.060

    Article  Google Scholar 

  37. Witharana, S., Chen, H., and Ding, Y., Nanoscale Res. Lett., 2011, vol. 6, ID 231. https://doi.org/10.1186/1556-276X-6-231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Sadeghinezhad, E., Togun, H., Mehrali, M., Sadeghi Nejad, P., Tahan Latibari, S., Abdulrazzaq, T., Kazi, S.N., and Metselaar, H.S.C., Int. J. Heat Mass Transfer., 2015, vol. 81, pp. 41–51. https://doi.org/10.1016/j.ijheatmasstransfer.2014.10.006

    Article  CAS  Google Scholar 

  39. Heris, S.Z., Mohammadpur, F., Mahian, O., and Sahin, A.Z., Exp. Heat Transf., 2015, vol. 28, no. 4, pp. 328–343. https://doi.org/10.1080/08916152.2014.883448

    Article  CAS  Google Scholar 

  40. Aglawe, K.R., Yadav, R.K., and Thool, S.B., Mater. Today Proc., 2020, vol. 43, pt. 1, pp. 366–372. https://doi.org/10.1016/j.matpr.2020.11.679

    Article  Google Scholar 

  41. Kakavandi, A. and Akbari, M., Int. J. Heat Mass Transfer., 2018, vol. 124, pp. 742–751. https://doi.org/10.1016/j.ijheatmasstransfer.2018.03.103

    Article  CAS  Google Scholar 

  42. Yasmin, H., Giwa, S.O., Noor, S., and Sharifpur, M., Nanomaterials, 2023, vol. 13, no. 3, ID 597. https://doi.org/10.3390/nano13030597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Sahooli, M. and Sabbaghi, S., Mater. Lett., 2013, vol. 93, pp. 254–257. https://doi.org/10.1016/j.matlet.2012.11.097

    Article  CAS  Google Scholar 

  44. Eastman, J.A., Choi, S.U.S., Li, S., Yu, W., and Thompson, L.J., Appl. Phys. Lett., 2001, vol. 78, no. 6, pp. 718–720. https://doi.org/10.1063/1.1341218

    Article  CAS  Google Scholar 

  45. Yu, W., **e, H., Wang, X., and Wang, X., Phys. Lett. A, 2011, vol. 375, no. 10, pp. 1323–1328. https://doi.org/10.1016/j.physleta.2011.01.040

    Article  CAS  Google Scholar 

  46. Guo, Z., J. Enhanc. Heat Transf., 2020, vol. 27, no. 1, pp. 1–70. https://doi.org/10.7282/t3-egx8-qr18

    Article  CAS  Google Scholar 

  47. Kumar, T.A., Pradyumna, G., and Jahar, S., J. Environ. Res. Develop., 2012, vol. 7, no. 2, pp. 768–777.

    Google Scholar 

  48. Shin, D. and Banerjee, D., Int. J. Heat Mass Transfer., 2014, vol. 74, pp. 210–214. https://doi.org/10.1016/j.ijheatmasstransfer.2014.02.066

    Article  CAS  Google Scholar 

  49. Alade, I.O., Abd Rahman, M.A., and Saleh, T.A., Sol. Energy, 2019, vol. 183, pp. 74–82. https://doi.org/10.1016/j.solener.2019.02.060

    Article  CAS  Google Scholar 

  50. Mekhilef, S., Saidur, R., and Kamalisarvestani, M., Renew. Sustain. Energy Rev., 2012, vol. 16, no. 5, pp. 2920–2925. https://doi.org/10.1016/j.rser.2012.02.012

    Article  CAS  Google Scholar 

  51. Moldoveanu, G.M., Ibanescu, C., Danu, M., and Minea, A.A., J. Mol. Liq., 2018, vol. 253, pp. 188–196. https://doi.org/10.1016/j.molliq.2018.01.061

    Article  CAS  Google Scholar 

  52. Sang, L. and Liu, T., Sol. Energy Mater. Sol. Cells, 2017, vol. 169, pp. 297–303. https://doi.org/10.1016/j.solmat.2017.05.032

    Article  CAS  Google Scholar 

  53. Zhang, X., Gu, H., and Fujii, M., Exp. Therm. Fluid Sci., 2007, vol. 31, no. 6, pp. 593–599. https://doi.org/10.1016/j.expthermflusci.2006.06.009

    Article  CAS  Google Scholar 

  54. Sajadi, A.R. and Kazemi, M.H., Int. Commun. Heat Mass Transf., 2011, vol. 38, no. 10, pp. 1474–1478. https://doi.org/10.1016/j.icheatmasstransfer.2011.07.007

    Article  CAS  Google Scholar 

  55. Murshed, S.M.S., Leong, K.C., and Yang, C., Int. J. Therm. Sci., 2005, vol. 44, no. 4, pp. 367–373. https://doi.org/10.1016/j.ijthermalsci.2004.12.005

    Article  CAS  Google Scholar 

  56. Asadi, A., AlArifi, I.M., and Foong, L.K., J. Mol. Liq., 2020, vol. 307, ID 112987. https://doi.org/10.1016/j.molliq.2020.112987

    Article  CAS  Google Scholar 

  57. Rejvani, M., Saedodin, S., Vahedi, S.M., Wongwises, S., and Chamkha, A.J., J. Therm. Anal. Calorim., 2019, vol. 138, no. 2, pp. 1823–1839. https://doi.org/10.1007/s10973-019-08225-5

    Article  CAS  Google Scholar 

  58. Sharifpur, M., Yousefi, S., and Meyer, J.P., Int. Commun. Heat Mass Transf., 2016, vol. 78, pp. 168–174. https://doi.org/10.1016/j.icheatmasstransfer.2016.09.010

    Article  CAS  Google Scholar 

  59. Al-Waeli, A.H.A., Chaichan, M.T., Sopian, K., and Kazem, H.A., Case Stud. Therm. Eng., 2019, vol. 13, ID 100340. https://doi.org/10.1016/j.csite.2018.10.001

    Article  Google Scholar 

  60. Hari, M., Joseph, S.A., Mathew, S., Nithyaja, B., Nampoori, V.P.N., and Radhakrishnan, P., Int. J. Therm. Sci., 2013, vol. 64, pp. 188–194. https://doi.org/10.1016/j.ijthermalsci.2012.08.011

    Article  CAS  Google Scholar 

  61. Selvam, C., Balaji, T., Lal, D.M., and Harish, S., Exp. Therm. Fluid Sci., 2017, vol. 80, pp. 67–76. https://doi.org/10.1016/j.expthermflusci.2016.08.013

    Article  CAS  Google Scholar 

  62. Deng, Y., Jiang, Y., and Liu, J., Appl. Therm. Eng., 2021, vol. 193, ID 117021. https://doi.org/10.1016/j.applthermaleng.2021.117021

    Article  CAS  Google Scholar 

  63. Hussanan, A., Salleh, M.Z., Khan, I., and Shafie, S., J. Mol. Liq., 2017, vol. 229, pp. 482–488. https://doi.org/10.1016/j.molliq.2016.12.040

    Article  CAS  Google Scholar 

  64. Sabri, L.S., Sultan, A.J., Ali, J.M., Majdi, H.S., and Al-Dahhan, M.H., ChemEngineering, 2023, vol. 7, no. 5, ID 85. https://doi.org/10.3390/chemengineering7050085

    Article  CAS  Google Scholar 

  65. Azmi, W.H., Sharma, K.V., Sarma, P.K., Mamat, R., Anuar, S., and Dharma Rao, V.D., Exp. Therm. Fluid Sci., 2013, vol. 51, pp. 103–111. https://doi.org/10.1016/j.expthermflusci.2013.07.006

    Article  CAS  Google Scholar 

  66. Godson, L., Deepak, K., Enoch, C., Jefferson, B., and Raja, B., Arch. Civ. Mech. Eng., 2014, vol. 14, no. 3, pp. 489–496. https://doi.org/10.1016/j.acme.2013.08.002

    Article  Google Scholar 

  67. Takabi, B. and Shokouhmand, H., Int. J. Mod. Phys. C, 2015, vol. 26, no. 4, ID 155047. https://doi.org/10.1142/S0129183115500473

    Article  CAS  Google Scholar 

  68. Xuan, Y., Li, Q., and Hu, W., AIChE J., 2003, vol. 49, no. 4, pp. 1038–1043. https://doi.org/10.1002/aic.690490420

    Article  CAS  Google Scholar 

  69. Mahian, O., Kianifar, A., Heris, S.Z., and Wongwises, S., Int. J. Heat Mass Transf., 2016, vol. 99, pp. 792–804. https://doi.org/10.1016/j.ijheatmasstransfer.2016.03.045

    Article  CAS  Google Scholar 

  70. Gupta, M., Kumar, R., Arora, N., Kumar, S., and Dilbagi, N., Arab. J. Sci. Eng., 2016, vol. 41, pp. 599–609. https://doi.org/10.1007/s13369-015-1699-5

    Article  CAS  Google Scholar 

  71. Mehrjou, B., Zeinali Heris, S., and Mohamadifard, K., Exp. Heat Transf., 2015, vol. 28, no. 3, pp. 282–297. https://doi.org/10.1080/08916152.2013.871606

    Article  CAS  Google Scholar 

  72. Liao, L. and Liu, Z.-H., Heat Mass Transf., 2009, vol. 45, pp. 1129–1136. https://doi.org/10.1007/s00231-009-0483-z

    Article  CAS  Google Scholar 

  73. Saidur, R., Kazi, S.N., Hossain, M.S., Rahman, M.M., and Mohammed, H.A., Renew. Sustain. Energy Rev., 2011, vol. 15, no. 1, pp. 310–323. https://doi.org/10.1016/j.rser.2010.08.018

    Article  CAS  Google Scholar 

  74. Abdulrahman, A.A., Mahdi, O.S., Sabri, L.S., Sultan, A.J., Al-Naseri, H., Hasan, Z.W., Majdi, H.S., and Ali, J.M., ChemEngineering, 2022, vol. 6, no. 3, ID 37. https://doi.org/10.3390/chemengineering6030037

    Article  CAS  Google Scholar 

  75. Bhattacharya, P., Saha, S.K., Yadav, A., Phelan, P.E., and Prasher, R.S., J. Appl. Phys., 2004, vol. 95, no. 11, pp. 6492–6494. https://doi.org/10.1063/1.1736319

    Article  CAS  Google Scholar 

  76. Lotfi, R., Rashidi, A.M., and Amrollahi, A., Int. Commun. Heat Mass Transf., 2012, vol. 39, no. 1, pp. 108–111. https://doi.org/10.1016/j.icheatmasstransfer.2011.10.002

    Article  CAS  Google Scholar 

  77. Balla, H.H., Abdullah, S., MohdFaizal, W., Zulkifli, R., and Sopian, K., J. Oleo Sci., 2013, vol. 62, no. 7, pp. 533–539. https://doi.org/10.5650/jos.62.533

    Article  CAS  PubMed  Google Scholar 

  78. Ajeel, R.K., Wan Salim, W.S.I., and Hasnan, K., Chem. Eng. Res. Des., 2019, vol. 148, pp. 202–217. https://doi.org/10.1016/j.cherd.2019.06.003

    Article  CAS  Google Scholar 

  79. Shiravi, A.H., Shafiee, M., Firoozzadeh, M., Bostani, H., and Bozorgmehrian, M., J. Therm. Anal. Calorim., 2021, vol. 145, no. 2, pp. 597–607. https://doi.org/10.1007/s10973-020-09729-1

    Article  CAS  Google Scholar 

  80. Shanthi, R., Anandan, S.S., and Ramalingam, V., Therm. Sci., 2012, vol. 16, no. 2, pp. 423–444. https://doi.org/10.2298/TSCI110201003S

    Article  Google Scholar 

  81. Kole, M. and Dey, T.K., Int. J. Therm. Sci., 2012, vol. 62, pp. 61–70. https://doi.org/10.1016/j.ijthermalsci.2012.02.002

    Article  CAS  Google Scholar 

  82. Devendiran, D.K. and Valan Arasu, A., Renew. Sustain. Energy Rev., 2016, vol. 60, pp. 21–40. https://doi.org/10.1016/j.rser.2016.01.055

    Article  CAS  Google Scholar 

  83. Qu, J., Zhang, R., Wang, Z., and Wang Q., Appl. Therm. Eng., 2019, vol. 147, pp. 390–398. https://doi.org/10.1016/j.applthermaleng.2018.10.094

    Article  CAS  Google Scholar 

  84. Chougule, S.S. and Sahu, S.K., J. Nanotechnol. Eng. Med., 2014, vol. 5, no. 1, ID 10901. https://doi.org/10.1115/1.4026971

    Article  CAS  Google Scholar 

  85. Chougule, S.S. and Sahu, S.K., J. Therm. Sci. Eng. Appl., 2014, vol. 6, no. 4, ID 41009. https://doi.org/10.1115/1.4027678

    Article  CAS  Google Scholar 

  86. Suresh, S., Venkitaraj, K.P., Selvakumar, P., and Chandrasekar, M., Exp. Therm. Fluid Sci., 2012, vol. 38, pp. 54–60. https://doi.org/10.1016/j.expthermflusci.2011.11.007

    Article  CAS  Google Scholar 

  87. Martinez, V.A., Vasco, D.A., Garcia-Herrera, C.M., and Ortega-Aguilera, R., Appl. Therm. Eng., 2019, vol. 161, ID 114130. https://doi.org/10.1016/j.applthermaleng.2019.114130

    Article  CAS  Google Scholar 

  88. Elsheikh, A.H., Sharshir, S.W., Mostafa, M.E., Essa, F.A., and Ali, M.K.A., Renew. Sustain. Energy Rev., 2018, vol. 82, pt. 3, pp. 3483–3502. https://doi.org/10.1016/j.rser.2017.10.108

    Article  CAS  Google Scholar 

  89. Cai, Y., Nan, Y., and Guo, Z., Int. J. Heat Mass Transf., 2020, vol. 158, ID 119921. https://doi.org/10.1016/j.ijheatmasstransfer.2020.119921

    Article  CAS  Google Scholar 

  90. Sadeghi, G., Nazari, S., Ameri, M., and Shama, F., Sustain. Energy Technol. Assess., 2020, vol. 37, ID 100578. https://doi.org/10.1016/j.seta.2019.100578

    Article  Google Scholar 

  91. Fazeli, S.A., Hosseini Hashemi, S.M., Zirakzadeh, H., and Ashjaee, M., Superlattices Microstruct., 2012, vol. 51, no. 2, pp. 247–264. https://doi.org/10.1016/j.spmi.2011.11.017

    Article  CAS  Google Scholar 

  92. Esmaeilzadeh, E., Almohammadi, H., Naziri Vatan, Sh., and Omrani, A.N., Int. J. Therm. Sci., 2013, vol. 63, pp. 31–37. https://doi.org/10.1016/j.ijthermalsci.2012.07.001

    Article  CAS  Google Scholar 

  93. Mehrali, M., Sadeghinezhad, E., Akhiani, A.R., Tahan Latibari, S., Metselaar, H.S.C., Kherbeet, A.Sh., and Mehrali, M., Powder Technol., 2017, vol. 308, pp. 149–157. https://doi.org/10.1016/j.powtec.2016.12.024

    Article  CAS  Google Scholar 

  94. Safaei, M.R., Shadloo, M.S., Goodarzi, M.S., Hadjadj, A., Goshayeshi, H.R., Afrand, M., and Kazi, S.N., Adv. Mech. Eng., 2016, vol. 8, no. 10, pp. 1–14. https://doi.org/10.1177/1687814016673569

    Article  CAS  Google Scholar 

  95. Ho, C.-J., Wei, L.C., and Li, Z.W., Appl. Therm. Eng., 2010, vol. 30, nos. 2–3, pp. 96–103. https://doi.org/10.1016/j.applthermaleng.2009.07.003

    Article  CAS  Google Scholar 

  96. Ma, H.B., Wilson, C., Borgmeyer, B., Park, K., Yu, Q., Choi, S.U.S., and Tirumala, M., Appl. Phys. Lett., 2006, vol. 88, no. 14, ID 143116. https://doi.org/10.1063/1.2192971

    Article  CAS  Google Scholar 

  97. Beck, M.P., Sun, T., and Teja, A.S., Fluid Phase Equilib., 2007, vol. 260, no. 2, pp. 275–278. https://doi.org/10.1016/j.fluid.2007.07.034

    Article  CAS  Google Scholar 

  98. Jung, J.-Y., Kim, E.S., and Kang, Y.T., Int. J. Heat Mass Transf., 2012, vol. 55, nos. 7–8, pp. 1941–1946. https://doi.org/10.1016/j.ijheatmasstransfer.2011.11.049

    Article  CAS  Google Scholar 

  99. Raykar, V.S. and Singh, A.K., Thermochim. Acta, 2010, vol. 502, nos. 1–2, pp. 60–65. https://doi.org/10.1016/j.tca.2010.02.007

    Article  CAS  Google Scholar 

  100. Suganthi, K.S. and Rajan, K.S., Int. J. Heat Mass Transf., 2012, vol. 55, nos. 25–26, pp. 7969–7980. https://doi.org/10.1016/j.ijheatmasstransfer.2012.08.032

    Article  CAS  Google Scholar 

  101. Utomo, A.T., Poth, H., Robbins, P.T., and Pacek, A.W., Int. J. Heat Mass Transf., 2012, vol. 55, nos. 25–26, pp. 7772–7781. https://doi.org/10.1016/j.ijheatmasstransfer.2012.08.003

    Article  CAS  Google Scholar 

  102. Pang, C., Jung, J.-Y., Lee, J.W., and Kang, Y.T., Int. J. Heat Mass Transf., 2012, vol. 55, nos. 21–22, pp. 5597–5602. https://doi.org/10.1016/j.ijheatmasstransfer.2012.05.048

    Article  CAS  Google Scholar 

  103. Nine, M.J., Batmunkh, M., Kim, J.-H., Chung, H.-S., and Jeong, H.-M., J. Nanosci. Nanotechnol., 2012, vol. 12, no. 6, pp. 4553–4559. https://doi.org/10.1166/jnn.2012.6193

    Article  CAS  PubMed  Google Scholar 

  104. Ahammed, N., Lazarus, G.A., and Wongwises, S., Int. J. Heat Mass Transf., 2016, vol. 103, pp. 1084–1097. https://doi.org/10.1016/j.ijheatmasstransfer.2016.07.070

    Article  CAS  Google Scholar 

  105. Mahmoudi, M., Tavakoli, M.R., Mirsoleimani, M.A., Gholami, A., and Salimpour, M.R., Int. J. Refrig., 2017, vol. 74, pp. 627–643. https://doi.org/10.1016/j.ijrefrig.2016.11.014

    Article  CAS  Google Scholar 

  106. Mohammed, M.K., Abdolbaqi, M.K., Ibrahim, T.K., Mamat, R.B., and Awad, O.I., MATEC Web Conf., 2018, vol. 225, ID 01019. https://doi.org/10.1051/matecconf/201822501019

    Article  CAS  Google Scholar 

  107. Ebrahimnia-Bajestan, E., Charjouei Moghadam, M., Niazmand, H., Daungthongsuk, W., and Wongwises, S., Int. J. Heat Mass Transf., 2016, vol. 92 pp. 1041–1052. https://doi.org/10.1016/j.ijheatmasstransfer.2015.08.107

    Article  Google Scholar 

  108. Akhavan-Zanjani, H., Saffar-Avval, M., Mansourkiaei, M., Sharif, F., and Ahadi, M., Int. J. Therm. Sci., 2016, vol. 100, pp. 316–323. https://doi.org/10.1016/j.ijthermalsci.2015.10.003

    Article  CAS  Google Scholar 

  109. Mehrali, M., Sadeghinezhad, E., Rosen, M.A., Tahan Latibari, S., Mehrali, M., Metselaar, H.S.C., and Kazi, S.N., Exp. Therm. Fluid Sci., 2015, vol. 68, pp. 100–108. https://doi.org/10.1016/j.expthermflusci.2015.03.012

    Article  CAS  Google Scholar 

  110. Hussien, A.A., Abdullah, M.Z., Yusop, N.M., Al-Nimr, M.A., Atieh, M.A., and Mehrali, M., Int. J. Heat Mass Transf., 2017, vol. 115, pt. B, pp. 1121–1131. https://doi.org/10.1016/j.ijheatmasstransfer.2017.08.120

    Article  CAS  Google Scholar 

  111. Takabi, B. and Shokouhmand, H., Int. J. Mod. Phys. C, 2015, vol. 26, no. 4, ID 1550047. https://doi.org/10.1142/S0129183115500473

    Article  CAS  Google Scholar 

  112. Asadi, A., Alarifi, I.M., and Foong, L.K., J. Mol. Liq., 2020, vol. 307, ID 112987. https://doi.org/10.1016/j.molliq.2020.112987

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zahraa N. Hussain or Jamal M. Ali.

Ethics declarations

The authors declare that they have no conflict of interest requiring the disclosure in this article.

Additional information

Publisher's Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hussain, Z.N., Ali, J.M., Majdi, H.S. et al. Study the Convective Heat Transfer Intensification by Using Nanotechnology: A Review. Russ J Appl Chem (2024). https://doi.org/10.1134/S1070427224010129

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1134/S1070427224010129

Keywords:

Navigation