Log in

N-Substituted 2-Sulfanylacetamide Prunus armeniaca: Synthesis, Characterization, and Adsorption Studies for As(III) Remediation

  • Various Technological Processes
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

An Erratum to this article was published on 01 October 2022

This article has been updated

Abstract

Aromatic amino acid or primary aliphatic acid available on Prunus armeniaca seed coat (PASC) powder is modified (MPASC) using thioglycolic acid and 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDC) in the form of N-substituted 2-sulfanylacetamide derivative. Infrared (FTIR), scanning electron microscopy, EDX, and XRD techniques are used for characterization of PASC and MPASC. Synthesized material is identified by the change in peak position and deformation of N–H bending vibration of primary amines peak. Peak at 1601 cm–1 due to N–H bending vibration is deformed at1656 cm–1 due to change of the primary amine into amide by thioglycolic acid. Both PASC and MPASC are then utilized for removal of As(III) form water. Adsorption experiments were conducted at different values of adsorbent dose, contact time and pH values in order to study their influence on the uptake of arsenic by the PASC and MPASC adsorbents. The Langmuir maximum adsorption capacity for PASC and MPASC were found to be 125 and 142.85 mg/g respectively. Sulfhydryl groups on MPASC indicate high affinity for As(III) ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

Change history

REFERENCES

  1. Bangaraiah, P. and Kumar, A., IJRTE, 2019, vol. 8, pp. 2277–3878. https://www.ijrte.org/wp-content/uploads/papers/v8i4/D7634118419.pdf. https://doi.org/10.35940/ijrte.D7634.118419

    Article  Google Scholar 

  2. Abeer, N., Khan, S.A., Muhammad, S., Rasool, A., and Ahmad, I., Environmental Technology and Innovation, 2020, vol. 20, ID 101171. https://doi.org/10.1016/j.eti.2020.101171

    Article  CAS  Google Scholar 

  3. Sogaard, E., Chemistry of Advanced Environmental Purification Processes of Water: Fundamentals and Applications, 1st ed., 2014.

  4. Sorg, T.J., Chen, A.S., and Wang, L., Water Research, 2014, vol. 48, pp. 156–169. https://doi.org/10.1016/j.watres.2013.09.016

    Article  CAS  PubMed  Google Scholar 

  5. Hua, J., Journal of Environmental Chemical Engineering, 2018, vol. 6, no. 1, pp. 156–168. https://doi.org/10.1016/j.jece.2017.11.062

    Article  CAS  Google Scholar 

  6. Singh, R., Singh, S., Parihar, P., Singh, V.P., and Prasad, S.M., Ecotoxicology and Environmental Safety, 2015, vol. 112, pp. 247–270. https://doi.org/10.1016/j.ecoenv.2014.10.009

    Article  CAS  PubMed  Google Scholar 

  7. Huq, M.E., Fahad, S., Shao, Z., Sarven, M.S., Al-Huqail, A.A., Siddiqui, M.H., Habib ur Rahman, M., Khan, I.A., Alam, M., Saeed, M., Rauf, A., Basir, A., Jamal, Y., and Khan, S.U., Journal of Environmental Management, 2019, vol. 242, pp. 199–209. https://doi.org/10.1016/j.jenvman.2019.04.086

    Article  CAS  PubMed  Google Scholar 

  8. https://www.hindustantimes.com/science/scientists-identify-new-potential-groundwater-arsenic-hotspots-in-india/story-VrHh20iYW65XvYvW6wWECM.html.

  9. Mohan, D. and Pittman Jr, C.U., Journal of Hazardous Materials, 2007, vol. 142(1–2), pp. 1–53. https://doi.org/10.1016/j.jhazmat.2007.01.006

    Article  CAS  PubMed  Google Scholar 

  10. Shakoor, M.B., Niazi, N.K., Bibi, I., Murtaza, G., Kunhikrishnan, A., Seshadri, B., Shahid, M., Ali, S., Bolan, N.S., Ok, Y.S., and Abid, M., Critical Reviews in Environmental Science and Technology, 2016, vol. 46(5), pp. 467–499. https://doi.org/10.1080/10643389.2015.1109910

    Article  Google Scholar 

  11. Shakoor, M.B., Niazi, N.K., Bibi, I., Shahid, M., Saqib, Z.A., Nawaz, M.F., Shaheen, S.M., Wang, H., Tsang, D.C., Bundschuh, J., and Ok, Y.S., Environment International, 2019, vol. 123, pp. 567–579. https://doi.org/10.1016/j.envint.2018.12.049

    Article  CAS  PubMed  Google Scholar 

  12. Raj, V., Jain, A., and Chaudhary, J., Journal of Pharmacy Research, 2012, vol. 5, no. 8, pp. 3964–3966.

    CAS  Google Scholar 

  13. Rai, I., Bachheti, R.K., Saini, C.K., Joshi, A., and Satyan, R.S., Oriental Pharmacy and Experimental Medicine, 2015, vol. 16, no. 1, pp. 1–15. https://doi.org/10.1007/s13596-015-0215-5

    Article  Google Scholar 

  14. Corbett, D., Kohan, N., Machado, G., **g, C., Nagardeolekar, A., and Bujanovic, B., Energies, 2015, vol. 8, no. 9, pp. 9640–9654. https://doi.org/10.3390/en8099640

    Article  CAS  Google Scholar 

  15. Sharma, S., Satpathy, G., and Gupta, R.K., Journal of Pharmacognosy and Phytochemistry, 2014, vol. 3, no. 3, pp. 23–28. https://www.phytojournal.com/archives/2014/vol3issue3/PartA/33.1.pdf.

    CAS  Google Scholar 

  16. Erdogan-Orhan, I., and Kartal, M., Food Research International, 2011, vol. 44, no. 5, pp. 1238–1243. https://doi.org/10.15835/buasvmcn-fst:11425

    Article  CAS  Google Scholar 

  17. Chen, K., Zhang, Z., **a, K., Zhou, X., Guo, Y., and Huang, T., ACS Omega, 2019, vol. 4, no. 5, pp. 8568–8579. https://doi.org/10.1021/acsomega.9b00572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Nikic, J., Tubic, A., Watson, M., Maletic, S., Solic, M., Majkic, T., and Agbaba, J., Water, 2019, vol. 11, no. 12, p. 2520. https://doi.org/10.3390/w11122520

    Article  CAS  Google Scholar 

  19. Zhang, J., Ding, T., Zhang, Z., Xu, L., and Zhang, C., PLOS ONE, 2015, vol. 10, no. 4, pp. 1–18. https://doi.org/10.1371/journal.pone.0123266

    Article  CAS  Google Scholar 

  20. Shen, Y., Jiang, N., Liu, S., Zheng, C., Wang, X., Huang, T., Guo, Y., and Bai, R., Journal of Environmental Chemical Engineering, 2018, vol. 6, no. 4, pp. 5420–5433. https://doi.org/10.1016/j.jece.2018.08.030

    Article  CAS  Google Scholar 

  21. Papaleo, R.M., Hallen, A., Sundqvist, B.U.R., Farenzena, L., Livi, R.P., de Araujo, M.A., and Johnson, R.E., Phys. Rev. B, 1996, vol. 5, pp. 2303–2313. https://doi.org/10.1103/PhysRevB.53.2303

    Article  Google Scholar 

  22. Ouellette, R.J., Rawn, D., Organic Chemistry Structure, Mechanism, and Synthesis, 1st ed, Amsterdam: Elsevier, 2014.

    Google Scholar 

  23. Ghosh, S.K., Advanced General Organic Chemistry—a Modernapproach. UV–Visible and IR spectroscopy, 2nd ed., Kolkata: New Central Book Agency, 2006.

    Google Scholar 

  24. Gogoi, P., Das, M., Begum, P., and Maji, T.K., Journal of Water and Health, 2021, vol. 19(2), pp. 336–350. https://doi.org/10.2166/wh.2021.267

    Article  CAS  PubMed  Google Scholar 

  25. Wang, X., Guo, Y., Yang, L., Han, M., Zhao, J., and Cheng, X., J. Environ. Anal. Toxicol, 2012, vol. 2(7), pp. 154–158. https://doi.org/10.4172/2161-0525.1000154

    Article  Google Scholar 

  26. Isokoski, K , Poteet, C.A., and Linnartz, H., Astronomy and Astrophysics, 2013, vol. 555, A85, pp. 1–6. https://doi.org/10.1051/0004-6361/201321517

    Article  CAS  Google Scholar 

  27. Kumar, R., Chawla, J., and Kaur, I., Journal of Water and Health, 2015, vol. 13, no. 1, pp. 18–33. https://doi.org/10.2166/wh.2014.024

    Article  PubMed  Google Scholar 

  28. Mustapha, S., Shuaib, D.T., Ndamitso, M.M., Etsuyankpa, M.B., Sumaila, A., Mohammed, U.M., and Nasirudeen, M.B., Applied Water Science, 2019, vol. 9, no. 6. https://doi.org/10.1007/s13201-019-1021-x

    Article  Google Scholar 

  29. Mandal, S., Sahu, M.K., and Patel, R.K., Water Resources and Industry, 2013, vol. 4, pp. 51–67. https://doi.org/10.1016/j.wri.2013.09.003

    Article  Google Scholar 

  30. Lata, S., Singh, P.K., and Samadder, S.R., International Journal of Environmental Science and Technology, 2015, vol. 12, pp. 1461–1478. https://doi.org/10.1007/s13762-014-0714-9

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by management of Manav Rachna International Institute of Research and Studies (MRIIRS) Faridabad, Haryana, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jyoti Chawla.

Ethics declarations

The authors declare no conflict of interest requiring disclosure in this article.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nayyar, M., Chawla, J. & Kumar, R. N-Substituted 2-Sulfanylacetamide Prunus armeniaca: Synthesis, Characterization, and Adsorption Studies for As(III) Remediation. Russ J Appl Chem 95, 742–755 (2022). https://doi.org/10.1134/S1070427222050159

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427222050159

Keywords:

Navigation