Log in

Silicon-Reduced Graphene Oxide Composite as Negative Electrode of Li-Ion Batteries

  • Composite Materials
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

Two types of treatment of the initial mechanical mixture [silicon nanopowder and graphene oxide (GO)] for obtaining Si/RGO nanocomposites were used: reduction in hydrazine vapor and heat treatment at 550°C in an argon atmosphere. It was shown that the type of reduction has an influence on the morphological and electrochemical characteristics of the composites due to the formation of defects and the presence of nitrogen in the graphene network. Less defective and nitrogen doped Si/RGO composites have a better electrochemical behavior as an active material of negative electrode for lithium-ion batteries. The discharge capacity of electrodes based on Si/RGO nanocomposites amounted to 437 mA h g–1 without polymer binder and 1192 mA h g–1 with CMC as a binder.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Lu, J., Chen, Z., Pan, F., et al., Electrochem. Energy Rev., 2018, vol. 1, pp. 35–53. https://doi.org/10.1007/s41918-018-0001-4

    Article  CAS  Google Scholar 

  2. Obrovac, M.N. and Christensen, L. Electrochem. Solid State Lett., 2004, vol. 7, no. 5, pp. A93–A96.

    Article  Google Scholar 

  3. Luo, F., Liu, B., Zheng, J., et al., J. Electrochem. Soc., 2015, vol. 162, no. 14, pp. A2509–A2528. https://doi.org/10.1149/2.0131514jes

    Article  CAS  Google Scholar 

  4. Wu, H., Cui, Y. Nano Today, 2012, vol. 7, no. 5, pp. 414–429.

    Article  CAS  Google Scholar 

  5. Evshchik, E.Yu., Korchun, A.V., Levchenko, A.V., et al., Int. J. Electrochem. Sci., 2021, vol. 16, no. 1, p. 151035

    Article  CAS  Google Scholar 

  6. Choi, J.W. and Aurbach, D., Nat. Rev. Mater., 2016, vol. 1, no. 4, pp. 1–16.

    Article  Google Scholar 

  7. Dobrovolsky, Yu.A., Bushkova, O.V., Astafiev, E.A., et al., Lithium-Ion Batteries: Textbook. Allowance, Moscow: RCTU named after D.I. Mendeleev, 2020.

    Google Scholar 

  8. Zhou, X., Yin, Y.-X., Wan, L.-J., et al., Adv. Energy. Mater., 2012, vol. 2, no. 9, pp. 1086–1090.

    Article  CAS  Google Scholar 

  9. Ding, N., Chen, Y., Li, R., et al., Electrochim. Acta, 2020, vol. 367, no. 20, pp. ID 137491. https://doi.org/10.1016/j.electacta.2020.137491

    Article  CAS  Google Scholar 

  10. Agyeman, D.A., Song, K., Lee, G.-H., et al., Adv. Energy Mater., 2016, vol. 6, no. 20, pp. 1600904.

    Article  Google Scholar 

  11. Botas, C., Carriazo, D., Zhang, W., et al., ACS Appl Mater Interfaces, 2016, vol. 8, no. 42, pp. 28800–28808.

    Article  CAS  Google Scholar 

  12. Korchun, A.V., Evshchik, E.Yu., Baskakov, S.A., Bushkova, O.V., Dobrovolsky, Y.A. Chimica Techno Acta, Forthcoming 2020. https://doi.org/10.15826/chimtech.2020.7.4.21

    Book  Google Scholar 

  13. Manzhos, R., Baskakov, S., Kabachkov, E., et al., Materials, 2021, vol. 14, p. 322. https://doi.org/10.3390/ma14020322

    Article  PubMed Central  Google Scholar 

  14. Novikov, D.V., Evschik, E.Yu., Berestenko, V.I., et al., Electrochimica Acta, 2016, vol. 208, pp. 109–119.

    Article  CAS  Google Scholar 

  15. Shulga, Yu.M., Kabachkov E.N., Baskakov S.A., et al., Russ. J. Phys. Chem. A, 2019, vol. 93, no. 2, pp. 296–300. https://doi.org/10.1134/S0036024419010278

    Article  CAS  Google Scholar 

  16. Lin, Q., Zhang, J., Kong, D., et al., Adv. Energy Mater., 2018, vol. 9, p. 1803078. https://doi.org/10.1002/aenm.201803078

    Article  CAS  Google Scholar 

  17. Wu, Z.-S., Ren, W., Xu, L., et al., ACS Nano, 2011, vol. 5, no. 7, pp. 5463-5471.

    Article  CAS  Google Scholar 

  18. Li, X., Geng, D., Zhang, Y., et al., Electrochem Communications, 2011, vol. 13, pp. 822–825.

    Article  CAS  Google Scholar 

  19. Wang, H., Zhang, C., Liu, Z., et al., J. Mater. Chem., 2011, no. 21, pp. 5430–5434.

    Article  Google Scholar 

  20. Reddy, A.L.M., Srivastava, A., Gowda, S.R., et al., ACS Nano, 2010, vol. 4, no. 11, pp. 6337–6342.

    Article  CAS  Google Scholar 

  21. Wei, D., Liu, Y., Wang, Y., et al., Nano Lett., 2009, vol. 9, no. 5, pp. 1752–1758.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was performed with financial support from the Ministry of Science and Higher Education of Russian Federation, project ID RFMEFI60419X0235.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Korchun.

Ethics declarations

The authors declare that they have no conflicts of interest requiring disclosure in this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Korchun, A.V., Evshchik, E.Y., Baskakov, S.A. et al. Silicon-Reduced Graphene Oxide Composite as Negative Electrode of Li-Ion Batteries. Russ J Appl Chem 93, 1940–1946 (2020). https://doi.org/10.1134/S1070427220120174

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427220120174

Keywords:

Navigation