Log in

Obtaining and Properties of L-Aspartic Acid Solutions of Chitosan

  • Macromolecular Compounds and Polymeric Materials
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

Conditions for obtaining L-aspartic acid solutions of chitosan were considered: dissolution of the polymer with the formation of chitosan aspartate occurs in pH range of 3.6–3.8 at a minimum stoichiometric ratio of [acid]/[chitosan (−NH2)] ∼ 0.43. The hydrodynamic, electrochemical, optical and biological properties of aqueous solutions of chitosan aspartic acid salt are investigated. It has been established that macromolecules of polymeric salt exhibit properties of a polyelectrolyte with a partially compensated charge in an aqueous medium. Huggins constants and temperature viscosity coefficients were calculated, which indicate an increased rigidity of the chitosan macrochain in the studied solutions and deterioration in the polymer—solvent interaction with increasing temperature. Chitosan aspartate powders in the form of lamellar microparticles with fractal ordering were isolated. Low biocompatibility and antibacterial activity of the polymeric salt are demonstrated, which allows recommending the production of biomedical products on its basis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rinaudo, M., Progress Polym. Sci., 2006, vol. 31, no. 7, pp. 7–603. https://doi.org/10.1016/j.progpolymsci.2006.06.001

    Article  Google Scholar 

  2. Mikhailov, G.P., Tuchkov, S.V., and Lazarev, V.V., Kulish, E.I., Russ. J. Phys. Chem., 2014, vol. 88, no. 6, pp. 6–936. https://doi.org/10.1134/S0036024414060181

    Article  Google Scholar 

  3. Chaouat, C., Balayssac, S., Malet-Martino, M., Belaubre, F., Questel, E., Schmitt, A.M., Poigny, S., Franceschi, S., and Perez, E.J., Microencapsul, 2017, vol. 34, no. 2, pp. 2–162. https://doi.org/10.1080/02652048.2017.1311956

    Article  Google Scholar 

  4. Fedoseeva, E.N. and Fedoseev, V.B., Polym. Sci. Ser. A, 2011, vol. 53, no. 11, pp. 11–1040. https://doi.org/10.1134/S0965545X1110004X.

    Article  Google Scholar 

  5. Sanli, O., Karaca, I., and Isiklan, N.J., Appl. Polym., 2009, vol. 111, no. 6, pp. 6–2731. https://doi.org/10.1002/app.29319

    Google Scholar 

  6. Gegel, N.O., Zhuravleva, Yu.Yu., Shipovskaya, A.B., Malinkina, O.N., and Zudina, I.V., Polymers, 2018, vol. 10, no. 3. pp. 259–275. https://doi.org/10.3390%2Fpolym10030259

    Article  PubMed Central  Google Scholar 

  7. Gegel, N.O., Zudina, I.V., Malinkina, O.N., and Shipovskaya, A.B., Microbiology, 2018, vol. 8, no. 2, pp. 2–732. https://doi.org/10.1134/S0026261718050107

    Google Scholar 

  8. Begin, A. and Van Calsteren, M.-R., Int. J. Biological Macromolec., 1999, vol. 26, no. 1, pp. 1–63. https://doi.org/10.1016/S0141-8130(99)00064-1

    Article  Google Scholar 

  9. Sedyakina, N.E., Zakharov, A.N., Krivoshchepov, A.F., Pribytkova, A.P., Bogdanova, Y.A., Feldman, N.B., Lutsenko, S.V., and Avramenko, G.V., Colloid Polym. Sci., 2017, vol. 295, no. 10, pp. 10–1915. https://doi.org/10.1007/s00396-017-4171-0

    Article  Google Scholar 

  10. Chashchin, I.S., Abramchuk, S.S., and Nikitin, L.N., Dokl. Phys. Chem., 2017, vol. 475, no. 1, pp. 1–134. https://doi.org/10.1134/S0012501617070041

    Article  Google Scholar 

  11. Rafey, A., Shrivastavaa, K.B.L., Iqbal, S.A., and Khan, Z.J., Solloid Interface Sci., 2011, vol. 354, no. 1, pp. 1–190. https://doi.org/10.1016/j.jcis.2010.10.046

    Article  Google Scholar 

  12. Li, Q., Song, B., Yang, Z., and Fan, H., Carbohydrate Polym., 2006, vol. 63, pp. 272–282. https://doi.org/10.1016/j.carbpol.2005.09.024

    Article  CAS  Google Scholar 

  13. Kuzina, L.G., Murzagil’dina, A.S., Chernova, VV, and Kulish, E.I., Vestn. Bashkir. Univ., 2012, vol. 17, no. 2. pp. 902–905.

    Google Scholar 

  14. Mikhailov, G.P. and Lazarev, V.V., Russ. J. Phys. Chem., 2016, vol. 90, no. 7, pp. 7–1367. https://doi.org/10.1134/S0036024416070207

    Article  Google Scholar 

  15. Kulish, E.I., Chernova, V.V., Volodina, V.P., and Kolesov, S.U., Polym. Sci. Ser. A, 2015, vol. 57, no. 5, pp. 5–508. https://doi.org/10.1134/S0965545X15050120.

    Article  Google Scholar 

  16. Kasaai, M.R., Arul, J., The Scientific World J., 2013, Article ID 508540. https://doi.org/10.1155/2013/508540

    Article  Google Scholar 

  17. Bobreshova, O.V., Bobylkina, O.V., Kulintsov, P.I., Bobrinskaya, G.A., Varlamov, V.P., and Nemtsev, S.V., Russ. J. Electrochem., 2004, vol. 40, no. 7, pp. 7–694. https://doi.org/10.1023/B:RUEL.0000035250.54523.e8

    Article  Google Scholar 

  18. Vasnev, V.A., Tarasov, A.I., and Markova, G.D., Polym. Sci. Ser. B, 2003, vol. 45, no. 9–10, pp. 319–320.

    Google Scholar 

  19. Ageev, E.P., Vikhoreva, G.A., Zotkin, M.A., Matushkina, N.N., Gerasimov, V.I., Zezin, S.B., and Obolonkova, E.S., Polym. Sci. Ser. A, 2004, vol. 46, no. 12, pp. 12–1245.

    Google Scholar 

  20. Kasatkina, M.A., Kil’deeva, N.R., and Budantseva, N.A., Phartical Chem. J., 2016, vol. 50, no. 4, pp. 4–250. https://doi.org/10.1007/s11094-016-1432-z

    Google Scholar 

  21. Shipovskaya, A.B., Rudenko, D.A, Fomina, V.I., and Ostrovsky, N.V., Eur. J. Nat. Hist., 2012, no. 6, pp. 7–12.

  22. Aksenova, N.A., Timofeeva, V.A., Rogovina, S.Z., Timashev, P.S., Glagolev, N.N., and Solov’eva, A.B., Polym. Sci. Ser. B, 2010, vol. 52, no. 1–2, pp. 67–72. https://doi.org/10.1134/S1560090410010100

    Article  Google Scholar 

  23. Lugovitskaya, T.N. and Shipovskaya, A.B., Russ. J. Gen. Chem., 2017, vol. 87, no. 4, pp. 4–782. https://doi.org/10.1134/S1070363217040193

    Article  Google Scholar 

  24. Gamzazadea, A.I., Sklyar, A.M., Rogozhin, S.V., and Pavlova, S.-S.A., Polym. Sci. USSR, 1985, vol. 27, no. 4, pp. 4–936. https://doi.org/10.1016/0032-3950(85)90437-X

    Google Scholar 

  25. Rumyantsev, A.M. and Kramarenko, E.Yu., Soft Matter., 2017, vol. 13, pp. 6831–6844. https://doi.org/10.1039/C7SM01340J

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. N. Lugovitskaya.

Ethics declarations

The authors declare that there is no conflict of interest requiring disclosure in this article.

Additional information

Russian Text © The Author(s), 2020, published in Zhurnal Prikladnoi Khimii, 2020, Vol. 93, No. 1, pp. 90–99.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lugovitskaya, T.N., Zudina, I.V. & Shipovskaya, A.B. Obtaining and Properties of L-Aspartic Acid Solutions of Chitosan. Russ J Appl Chem 93, 80–88 (2020). https://doi.org/10.1134/S1070427220010097

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427220010097

Keywords

Navigation