Log in

Pyridyl-Substituted Ureas and Carbamates: Synthesis and Application (A Review)

  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

The review is devoted to the methods of synthesis of pyridine-substituted ureas and carbamates. The classical synthetic approaches to such compounds together with the features of the synthetic procedures associated with the structure of the target compounds are considered. Close attention is focused on the new methods of synthesis of the title compounds. The main directions of application of pyridine-substituted ureas and carbamates are analyzed. The latest achievements in the application of these compounds in both medicinal chemistry and materials science are covered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme

REFERENCES

  1. Nitschke, C. and Scherr, G., Urea Derivatives, in Ullmann’s Encyclopedia of Industrial Chemistry, Weinheim : Wiley–VCH, 2010. https://doi.org/10.1002/14356007.o27_o04

  2. Jäger, P., Rentzea, C.N., and Kieczka, H., Carbamates and Carbamoyl Chlorides, in Ullmann’s Encyclopedia of Industrial Chemistry, Weinheim: Wiley–VCH, 2000. https://doi.org/10.1002/14356007.a05_051

  3. Gama, N., Ferreira, A., and Barros-Timmons, A., Materials, 2018, vol. 11, no. 10, p. 1841. https://doi.org/10.3390/ma11101841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Wuts, P.G.M. and Greene, T.W., Protection for the Amino Group, in Greenes Protective Groups in Organic Synthesis, Hoboken, NJ: Wiley, 4 ed., 2006, p. 696. https://doi.org/10.1002/9780470053485.ch7

  5. Ghosh, A.K. and Brindisi, M., J. Med. Chem., 2020, vol. 63, no. 6, p. 2751. https://doi.org/10.1021/acs.jmedchem.9b01541

    Article  CAS  PubMed  Google Scholar 

  6. Listro, R., Rossino, G., Piaggi, F., Sonekan, F.F., Rossi, D., Linciano, P., and Collina, S., Front. Chem., 2022, vol. 10, 995351. https://doi.org/10.3389/fchem.2022.995351

  7. Gupta, R.C., Carbamate Pesticides, in Encyclopedia of Toxicology, London: Academic, 2014, 4 ed., p. 661. https://doi.org/10.1016/B978-0-12-386454-3.00106-8

  8. Ghosh, A.K. and Brindisi, M., J. Med. Chem., 2015, vol. 58, no. 7, p. 2895. https://doi.org/10.1021/jm501371s

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Allaka, T.R. and Katari, N.K., Synthesis of Pyridine Derivatives for Diverse Biological Activity Profiles: A Review, in Recent Developments in the Synthesis and Applications of Pyridines, Amsterdam: Elsevier, 2023, p. 605. https://doi.org/10.1016/B978-0-323-91221-1.00005-1

  10. Abu-Taweel, M.G., Ibrahim, M.M., Khan, S., AlSaidi, H.M., Alshamrani, M., Alhumaydhi, F.A., and Alharthi, S.S., Crit. Rev. Anal. Chem., 2022, p. 1. https://doi.org/10.1080/10408347.2022.2089839

  11. De, S., Ashok Kumar, S.K., Shah, S.K., Kazi, S., Sarkar, N., Banerjee, S., and Dey, S., Drug Des. Devel. Ther., 2022, vol. 12, no. 24, p. 15385. https://doi.org/10.1039/D2RA01571D

    Article  CAS  Google Scholar 

  12. Ling, Y., Hao, Z.Y., Liang, D., Zhang, C.L., Liu, Y.F., and Wang, Y., Drug Des. Devel. Ther., 2021, vol. 15, p. 4289. https://doi.org/10.2147/DDDT.S329547

    Article  CAS  Google Scholar 

  13. Vishnyakova, T.P., Golubeva, I.A., and Glebova, E.V., Russ. Chem. Rev., 1985, vol. 54, no. 3, p. 249. https://doi.org/10.1070/RC1985v054n03ABEH003022

    Article  Google Scholar 

  14. Chaturvedi, D., Mishra, N., and Mishra, V., Curr. Org. Synth., 2007, vol. 4, no. 3, p. 308. https://doi.org/10.2174/157017907781369298

    Article  CAS  Google Scholar 

  15. Babad, H. and Zeiler, A.G., Chem. Rev., 1973, vol. 73, no. 1, p. 75. https://doi.org/10.1021/cr60281a005

    Article  CAS  Google Scholar 

  16. Ozaki, S., Chem. Rev., 1972, vol. 72, no. 5, p. 457. https://doi.org/10.1021/cr60279a002

    Article  Google Scholar 

  17. Díaz, D.J., Darko, A.K., and McElwee-White, L., Eur. J. Org. Chem., 2007, vol. 2007, no. 27, p. 4453. https://doi.org/10.1002/ejoc.200700148

    Article  CAS  Google Scholar 

  18. Gadge, S.T. and Bhanage, B.M., Drug Des. Devel. Ther., 2014, vol. 4, no. 20, p. 10367. https://doi.org/10.1039/C3RA46273K

    Article  CAS  Google Scholar 

  19. Ragaini, F., Dalton Trans., 2009, p. 6251. https://doi.org/10.1039/B902425P

  20. Ruiz-Castillo, P. and Buchwald, S.L., Chem. Rev., 2016, vol. 116, no. 19, p. 12564. https://doi.org/10.1021/acs.chemrev.6b00512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Beletskaya, I.P. and Cheprakov, A.V., Organometallics, 2012, vol. 31, no. 22, p. 7753. https://doi.org/10.1021/om300683c

    Article  CAS  Google Scholar 

  22. Aubé, J., Fehl, C., Liu, R., McLeod, M.C., and Motiwala, H.F., Hofmann, Curtius, Schmidt, Lossen, and Related Reactions, in Comprehensive Organic Synthesis, Amsterdam: Elsevier, 2014, 2 ed., p. 598. https://doi.org/10.1016/B978-0-08-097742-3.00623-6

  23. Carling, R.W., Moore, K.W., Moyes, C.R., Jones, E.A., Bonner, K., Emms, F., Marwood, R., Patel, S., Patel, S., Fletcher, A.E., Beer, M., Sohal, B., Pike, A., and Leeson, P.D., J. Med. Chem., 1999, vol. 42, no. 14, p. 2706. https://doi.org/10.1021/jm991029k

    Article  CAS  PubMed  Google Scholar 

  24. Kurita, K., Matsumura, T., and Iwakura, Y., J. Org. Chem., 1976, vol. 41, no. 11, p. 2070. https://doi.org/10.1021/jo00873a053

    Article  CAS  Google Scholar 

  25. Taguchi, M., Sugimoto, K., Goda, K.-I., Akama, T., Yamamoto, K., Suzuki, T., Tomishima, Y., Nishiguchi, M., Arai, K., Takahashi, K., and Kobori, T., Bioorg. Med. Chem. Lett., 2003, vol. 13, no. 12, p. 1963. https://doi.org/10.1016/S0960-894X(03)00360-3

    Article  CAS  PubMed  Google Scholar 

  26. Cotarca, L., Delogu, P., Nardelli, A., and Šunjić, V., Synthesis, 1996, vol. 1996, no. 5, p. 553. https://doi.org/10.1055/s-1996-4273

    Article  Google Scholar 

  27. Yan, H., Mao, Z.-Y., Hou, Z.-W., Song, J., and Xu, H.-C., Beilstein J. Org. Chem., 2019, vol. 15, p. 795. https://doi.org/10.3762/bjoc.15.76

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ghosh, K., Tarafdar, D., Petsalakis, I.D., and Theodorakopoulos, G., Eur. J. Org. Chem., 2017, vol. 2017, no. 2, p. 355. https://doi.org/10.1002/ejoc.201601203

    Article  CAS  Google Scholar 

  29. Wei, D., Chen, L., Yan, X., Li, Y., Li, J., and Wang, D., J. Chem. Res., 2016, vol. 40, no. 3, p. 152. https://doi.org/10.3184/174751916X1454671147114

    Article  CAS  Google Scholar 

  30. Mocilac, P. and Gallagher, J.F., Struct. Chem., 2017, vol. 28, no. 3, p. 697. https://doi.org/10.1007/s11224-016-0851-5

    Article  CAS  Google Scholar 

  31. Iriepa, I. and Bellanato, J., J. Mol. Struct., 2013, vol. 1044, p. 215. https://doi.org/10.1016/j.molstruc.2013.01.001

    Article  CAS  Google Scholar 

  32. Zeng, J., Tan, Y.J., Leow, M.L., and Liu, X.W., Org. Lett., 2012, vol. 14, no. 17, p. 4386. https://doi.org/10.1021/ol301858j

    Article  CAS  PubMed  Google Scholar 

  33. Majgier-Baranowska, H., Li, B., and Peet, N.P., Synth. Commun., 2013, vol. 43, no. 8, p. 1173. https://doi.org/10.1080/00397911.2011.625291

    Article  CAS  Google Scholar 

  34. Shahsavari, S., Gooding, J., Wigstrom, T., and Fang, S., ChemistrySelect, 2017, vol. 2, no. 13, p. 3959. https://doi.org/10.1002/slct.201700364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Awasthi, A., Mukherjee, A., Singh, M., Rathee, G., Vanka, K., and Chandra, R., Tetrahedron, 2020, vol. 76, no. 23, p. 131223. https://doi.org/10.1016/j.tet.2020.131223

    Article  CAS  Google Scholar 

  36. Dighe, S.N. and Jadhav, H.R., Tetrahedron Lett., 2012, vol. 53, no. 43, p. 5803. https://doi.org/10.1016/j.tetlet.2012.08.089

    Article  CAS  Google Scholar 

  37. Ingale, A.P., More, V.K., Gangarde, U.S., and Shinde, S.V., New J. Chem., 2018, vol. 42, no. 12, p. 10142. https://doi.org/10.1039/C8NJ01585F

    Article  CAS  Google Scholar 

  38. Schechter, A., Goldrich, D., Chapman, J.R., Uberheide, B.M., and Lim, D., Synth. Commun., 2015, vol. 45, no. 5, p. 643. https://doi.org/10.1080/00397911.2014.976348

    Article  CAS  Google Scholar 

  39. Shahsavari, S., McNamara, C., Sylvester, M., Bromley, E., Joslin, S., Lu, B.Y., and Fang, S., Beilstein J. Org. Chem., 2018, vol. 14, p. 1750. https://doi.org/10.3762/bjoc.14.149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Azhdari Tehrani, A., Esrafili, L., Abedi, S., Morsali, A., Carlucci, L., Proserpio, D.M., Wan, J., Junk, P.C., and Liu, T., Inorg. Chem., 2017, vol. 56, no. 3, p. 1446. https://doi.org/10.1021/acs.inorgchem.6b02518

    Article  CAS  PubMed  Google Scholar 

  41. Gube, A., Komber, H., Sahre, K., Friedel, P., Voit, B., and Böhme, F., J. Org. Chem., 2012, vol. 77, no. 21, p. 9620. https://doi.org/10.1021/jo3015598

    Article  CAS  PubMed  Google Scholar 

  42. Padiya, K.J., Gavade, S., Kardile, B., Tiwari, M., Bajare, S., Mane, M., Gaware, V., Varghese, S., Harel, D., and Kurhade, S., Org. Lett., 2012, vol. 14, no. 11, p. 2814. https://doi.org/10.1021/ol301009d

    Article  CAS  PubMed  Google Scholar 

  43. Stumpf, A., Xu, D., Ranjan, R., Angelaud, R., and Gosselin, F., Org. Process Res. Dev., 2023, vol. 27, no. 3, p. 523. https://doi.org/10.1021/acs.oprd.2c00384

    Article  CAS  Google Scholar 

  44. Stokes, S. and Martin, N.G., Tetrahedron Lett., 2012, vol. 53, no. 36, p. 4802.

    Article  CAS  Google Scholar 

  45. Pujari, V.K., Vinnakota, S., Kakarla, R.K., and Marojua, S., Asian J. Chem., 2019, vol. 31, no. 1, p. 41. https://doi.org/10.14233/ajchem.2019.21447

    Article  CAS  Google Scholar 

  46. Suh, S.E., Nkulu, L.E., Lin, S., Krska, S.W., and Stahl, S.S., Chem. Sci., 2021, vol. 12, no. 30, p. 10380. https://doi.org/10.1039/D1SC02049H

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Moyaert, T., Schroeder, Z.W., and Dawe, L.N., Eur. J. Inorg. Chem., 2018, vol. 2018, no. 2, p. 167. https://doi.org/10.1002/ejic.201701220

    Article  CAS  Google Scholar 

  48. Reddy, K.U.M., Reddy, A.P., and Reddy, B.J., Asian J. Chem., 2013, vol. 25, no. 3, p. 1695. https://doi.org/10.14233/ajchem.2013.13856

    Article  CAS  Google Scholar 

  49. Luzina, E.L. and Popov, A.V., J. Fluorine Chem., 2015, vol. 176, p. 82. https://doi.org/10.1016/j.jfluchem.2015.06.005

    Article  CAS  Google Scholar 

  50. Liu, M., Lu, X., Shi, L., Wang, F., and Sun, J., ChemSusChem., 2017, vol. 10, no. 6, p. 1110. https://doi.org/10.1002/cssc.201600973

    Article  CAS  PubMed  Google Scholar 

  51. Huang, X., Zhuang, T., Kates, P.A., Gao, H., Chen, X., and Groves, J.T., J. Am. Chem. Soc., 2017, vol. 139, no. 43, p. 15407. https://doi.org/10.1021/jacs.7b07658

    Article  CAS  PubMed  Google Scholar 

  52. Chahal, M.K., Dar, T.A., and Sankar, M., New J. Chem., 2018, vol. 42, no. 12, p. 10059. https://doi.org/10.1039/C8NJ00503F

    Article  CAS  Google Scholar 

  53. Baghery, S., Zolfigol, M.A., Schirhagl, R., Hasani, M., Stuart, M.C., and Nagl, A., Appl. Organomet. Chem., 2017, vol. 31, no. 12, e3883. https://doi.org/10.1002/aoc.3883

  54. Wang, X., Zhang, J., Chen, Q., Zhou, W., and Wu, J., Chinese Chem. Lett., 2022, vol. 33, no. 11, p. 4860. https://doi.org/10.1016/j.cclet.2022.02.025

    Article  CAS  Google Scholar 

  55. L’abbé, G., Synthesis, 1987, vol. 1987, no. 6, p. 525. https://doi.org/10.1055/s-1987-27994

    Article  Google Scholar 

  56. Baur, X., Marek, W., Ammon, J., Czuppon, A.B., Marczynski, B., Raulf-Heimsoth, M., Roemmelt, H., and Fruhmann, G., Int. Arch. Occup. Environ. Health, 1994, vol. 66, no. 3, p. 141. https://doi.org/10.1007/BF00380772

    Article  CAS  PubMed  Google Scholar 

  57. Fisseler-Eckhoff, A., Bartsch, H., Zinsky, R., and Schirren, J., Int. J. Environ. Res. Public Health, 2011, vol. 8, no. 9, p. 3672. https://doi.org/10.3390/ijerph8093672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Bello, D., Herrick, C.A., Smith, T.J., Woskie, S.R., Streicher, R.P., Cullen, M.R., Liu, Y., and Redlich, C.A., Environ. Health Perspect., 2007, vol. 115, no. 3, p. 328. https://doi.org/10.1289/ehp.9557

    Article  CAS  PubMed  Google Scholar 

  59. Chambers, J. and Reese, C.B., Tetrahedron Lett., 1975, vol. 16, no. 32, p. 2783. https://doi.org/10.1016/S0040-4039(00)75239-7

    Article  Google Scholar 

  60. Holt, J., Andreassen, T., Bakke, J.M., and Fiksdahl, A., J. Heterocycl. Chem., 2005, vol. 42, no. 2, p. 259. https://doi.org/10.1002/jhet.5570420213

    Article  CAS  Google Scholar 

  61. Delebecq, E., Pascault, J.P., Boutevin, B., and Ganachaud, F., Chem. Rev., 2013, vol. 113, no. 1, p. 80. https://doi.org/10.1021/cr300195n

    Article  CAS  PubMed  Google Scholar 

  62. Rolph, M.S., Markowska, A.L., Warriner, C.N., and O’Reilly, R.K., Polym. Chem., 2016, vol. 7, no. 48, p. 7351. https://doi.org/10.1039/C6PY01776B

    Article  CAS  Google Scholar 

  63. Wicks, D.A. and Wicks, Z.W., Prog. Org. Coatings, 2001, vol. 41, nos. 1–3, p. 1. https://doi.org/10.1016/S0300-9440(00)00164-8

    Article  CAS  Google Scholar 

  64. Wicks, Z.W., Prog. Org. Coatings, 1981, vol. 9, no. 1, p. 3. https://doi.org/10.1016/0033-0655(81)80013-1

    Article  CAS  Google Scholar 

  65. Wicks, D.A. and Wicks, Z.W., Prog. Org. Coatings, 1999, vol. 36, no. 3, p. 148. https://doi.org/10.1016/S0300-9440(99)00042-9

    Article  CAS  Google Scholar 

  66. Wicks, Z.W., Prog. Org. Coatings, 1975, vol. 3, no. 1, p. 73. https://doi.org/10.1016/0300-9440(75)80002-6

    Article  CAS  Google Scholar 

  67. Kasatkina, S.O., Geyl, K.K., Baykov, S.V., Boyarskaya, I.A., and Boyarskiy, V.P., Org. Biomol. Chem., 2021, vol. 19, no. 27, p. 6059. https://doi.org/10.1039/D1OB00783A

    Article  CAS  PubMed  Google Scholar 

  68. Kasatkina, S.O., Geyl, K.K., Baykov, S.V., Novikov, M.S., and Boyarskiy, V.P., Adv. Synth. Catal., 2022, vol. 364, no. 7, p. 1295. https://doi.org/10.1002/adsc.202101490

    Article  CAS  Google Scholar 

  69. Baykova, S.O., Geyl, K.K., Baykov, S.V., and Boyarskiy, V.P., Int. J. Mol. Sci., 2023, vol. 24, no. 8. 7633. https://doi.org/10.3390/ijms24087633

  70. Baykova, S.O., Baykov, S.V., Petrov, A.A., Burmistrov, V.V. and Boyarskiy, V.P., Russ. J. Org. Chem., 2023, vol 58, no. 7, p. 1149. doi: 10.1134/S1070428023070059

    Article  Google Scholar 

  71. Liu, K., **e, Y., Qin, Y., Parmar, V.S., Liu, Y., and Cao, P., Org. Chem. Front., 2023, vol. 10, no. 13, p. 3182. https://doi.org/10.1039/D3QO00571B

    Article  CAS  Google Scholar 

  72. Mancuso, R., Raut, D.S., Della, Ca’ N., Fini, F., Carfagna, C., and Gabriele, B., ChemSusChem., 2015, vol. 8, no. 13, p. 2204. https://doi.org/10.1002/cssc.201500343

    Article  CAS  PubMed  Google Scholar 

  73. Guan, Z.H., Lei, H., Chen, M., Ren, Z.H., Bai, Y., and Wang, Y.Y., Adv. Synth. Catal., 2012, vol. 354, nos. 2–3, p. 489. https://doi.org/10.1002/adsc.201100545

    Article  CAS  Google Scholar 

  74. Li, J., Zhou, J., Wang, Y., Yu, Y., Liu, Q., Yang, T., Chen, H., and Cao, H., Sci. China Chem., 2022, vol. 65, no. 1, p. 68. https://doi.org/10.1007/s11426-021-1122-6

    Article  CAS  Google Scholar 

  75. Iturmendi, A., Iglesias, M., Munárriz, J., Polo, V., Pérez-Torrente, J.J., and Oro, L.A., Chem. Commun., 2017, vol. 53, no. 2, p. 404. https://doi.org/10.1039/C6CC09133D

    Article  CAS  Google Scholar 

  76. Zhang, X., Li, D., Ma, X., Wang, Y., and Zhang, G., Synthesis, 2013, vol. 45, no. 10, p. 1357. https://doi.org/10.1055/s-0033-1338413

    Article  CAS  Google Scholar 

  77. Zhang, X., Dong, S., Ding, Q., Fan, X., and Zhang, G., Chinese Chem. Lett., 2019, vol. 30, no. 2, p. 375. https://doi.org/10.1016/j.cclet.2018.07.017

    Article  CAS  Google Scholar 

  78. Zhang, X., Li, Z., Wang, Y., Dong, S., Niu, X., and Zhang, G., Arkivoc, 2016, vol. 2016, no. 5, p. 197. https://doi.org/10.3998/ark.5550190.p009.683

    Article  CAS  Google Scholar 

  79. Tian, F., Chen, Y., Wang, X., Li, P., and Lu, S., J. Chem., 2015, vol. 2015, p. 1. https://doi.org/10.1155/2015/210806

    Article  CAS  Google Scholar 

  80. Ren, L. and Jiao, N., Chem. Commun., 2014, vol. 50, no. 28, p. 3706. https://doi.org/10.1039/C4CC00538D

    Article  CAS  Google Scholar 

  81. Chen, B., Peng, J.B., Ying, J., Qi, X., and Wu, X.F., Adv. Synth. Catal., 2018, vol. 360, no. 15, p. 2820. https://doi.org/10.1002/adsc.201800496

    Article  CAS  Google Scholar 

  82. Wang, L., Wang, H., Li, G., Min, S., **ang, F., Liu, S., and Zheng, W., Adv. Synth. Catal., 2018, vol. 360, no. 23, p. 4585. https://doi.org/10.1002/adsc.201800954

    Article  CAS  Google Scholar 

  83. Mozaffari, M. and Nowrouzi, N., Eur. J. Org. Chem., 2019, vol. 2019, no. 46, p. 7541. https://doi.org/10.1002/ejoc.201901273

    Article  CAS  Google Scholar 

  84. Xu, M., Jupp, A.R., and Stephan, D.W., Angew. Chem. Int. Ed., 2017, vol. 56, no. 45, p. 14277. https://doi.org/10.1002/anie.201708921

    Article  CAS  Google Scholar 

  85. Xu, M., Jupp, A.R., Ong, M.S., Burton, K.I., Chitnis, S.S., and Stephan, D.W., Angew. Chem. Int. Ed., 2019, vol. 58, no. 17, p. 5707. https://doi.org/10.1002/ange.201900058

    Article  CAS  Google Scholar 

  86. Takeuchi, K., Chen, M.-Y., Yuan, H.-Y., Koizumi, H., Matsumoto, K., Fukaya, N., Choe, Y.-K., Shigeyasu, S., Matsumoto, S., Hamura, S., and Choi, J.-C., Chem. Eur. J., 2021, vol. 27, no. 72, p. 18066. https://doi.org/10.1002/chem.202103587

    Article  CAS  PubMed  Google Scholar 

  87. Zhang, Q., Yuan, H.Y., Fukaya, N., Yasuda, H., and Choi, J.C., ChemSusChem., 2017, vol. 10, no. 7, p. 1501. https://doi.org/10.1002/cssc.201601878

    Article  CAS  PubMed  Google Scholar 

  88. Labiche, A., Norlöff, M., Feuillastre, S., Taran, F., and Audisio, D, Asian J. Org. Chem., 2023, vol. 12, no. 3, article e202200640. https://doi.org/10.1002/ajoc.202200640

  89. Vinogradova, E.V., Fors, B.P., and Buchwald, S.L., J. Am. Chem. Soc., 2012, vol. 134, no. 27, p. 11132. https://doi.org/10.1021/ja305212v

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Vinogradova, E.V., Park, N.H., Fors, B.P., and Buchwald, S.L., Org. Lett., 2013, vol. 15, no. 6, p. 1394. https://doi.org/10.1021/ol400369n

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Yang, X., Zhang, Y., and Ma, D., Adv. Synth. Catal., 2012, vol. 354, no. 13, p. 2443. https://doi.org/10.1002/adsc.201200296

    Article  CAS  Google Scholar 

  92. Yin, H., Chen, B., Zhang, X., Yang, X., Zhang, Y., Jiang, Y., and Ma, D., Tetrahedron, 2013, vol. 69, no. 26, p. 5326. https://doi.org/10.1016/j.tet.2013.04.117

    Article  CAS  Google Scholar 

  93. Kumar, S.V. and Ma, D., J. Org. Chem., 2018, vol. 83, no. 5, p. 2706. https://doi.org/10.1021/acs.joc.7b03175

    Article  CAS  PubMed  Google Scholar 

  94. Ghosh, I., Shlapakov, N., Karl, T.A., Düker, J., Nikitin, M., Burykina, J.V., Ananikov, V.P., and König, B., Nature, 2023, vol. 619, p. 87. https://doi.org/10.1038/s41586-023-06087-4

    Article  CAS  PubMed  Google Scholar 

  95. Breitler, S., Oldenhuis, N.J., Fors, B.P., and Buchwald, S.L., Org. Lett., 2011, vol. 13, no. 12, p. 3262. https://doi.org/10.1021/ol201210t

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Li, J., Wang, X., Wang, Z., and Shi, Y., Org. Lett., 2021, vol. 23, no. 22, p. 8958. https://doi.org/10.1021/acs.orglett.1c03468

    Article  CAS  PubMed  Google Scholar 

  97. Wagner, P., Bollenbach, M., Doebelin, C., Bihel, F., Bourguignon, J.J., Salomé, C., and Schmitt, M., Green Chem., 2014, vol. 16, no. 9, p. 4170. https://doi.org/10.1039/C4GC00853G

    Article  CAS  Google Scholar 

  98. Reddy, L.R., Kotturi, S., Waman, Y., Ravinder Reddy, V., Patel, C., Kobarne, A., and Kuttappan, S., J. Org. Chem., 2018, vol. 83, no. 22, p. 13854. https://doi.org/10.1021/acs.joc.8b02182

    Article  CAS  PubMed  Google Scholar 

  99. Li, X., Li, B., You, J., and Lan, J., Org. Biomol. Chem., 2013, vol. 11, no. 12, p. 1925. https://doi.org/10.1039/C3OB40094H

    Article  CAS  PubMed  Google Scholar 

  100. Lv, C., Liu, D., Muschin, T., Bai, C., Bao, A., and Bao, Y.S., Org. Chem. Front., 2022, vol. 9, no. 5, p. 1354. https://doi.org/10.1039/D1QO01922H

    Article  CAS  Google Scholar 

  101. Wang, S.N., Zhang, G.Y., Shoberu, A., and Zou, J.P., J. Org. Chem., 2021, vol. 86, no. 13, p. 9067. https://doi.org/10.1021/acs.joc.1c01031

    Article  CAS  PubMed  Google Scholar 

  102. Zhang, Y., Ge, X., Lu, H., and Li, G., Angew. Chem. Int. Ed. 2021, vol. 60, no. 4, p. 1845. https://doi.org/10.1002/anie.202010974

  103. Wagh, G.D., Pathare, S.P., and Akamanchi, K.G., ChemistrySelect, 2018, vol. 3, no. 25, p. 7049. https://doi.org/10.1002/slct.201800954

    Article  CAS  Google Scholar 

  104. Basu, P., Dey, T.K., Ghosh, A., Biswas, S., Khan, A., and Islam, S.M., New J. Chem., 2020, vol. 44, no. 6, p. 2630. https://doi.org/10.1039/C9NJ05675K

    Article  CAS  Google Scholar 

  105. Jain, I. and Malik, P., Synlett, 2022, vol. 33, no. 1, p. 93. https://doi.org/10.1055/s-0040-1720927

    Article  CAS  Google Scholar 

  106. Arisawa, M., Org. Lett., 2021, vol. 23, no. 24, p. 9382. https://doi.org/10.1080/10426507.2019.1602621

    Article  CAS  PubMed  Google Scholar 

  107. Huang, C., Luo, X., Zhai, J., Chen, Y., Chen, D.M., and Zhu, B.X., Polyhedron, 2019, vol. 165, p. 111. https://doi.org/10.1016/j.poly.2019.03.012

    Article  CAS  Google Scholar 

  108. Gündüz, M.G., Uğur, S.B., Güney, F., Özkul, C., Krishna, V.S., Kaya, S., Sriram, D., and Doğan, Ş.D., Bioorg. Chem., 2020, vol. 102. 104104. https://doi.org/10.1016/j.bioorg.2020.104104

  109. Kurasawa, Y., Yoshida, K., Yamazaki, N., Sasaki, K., Zamami, Y., Min, Z., Togi, A., Ito, H., Kaji, E., and Fukaya, H., J. Heterocycl. Chem., 2014, vol. 51, no. S1, p. E241. https://doi.org/10.1002/jhet.1813

  110. Kulkarni, A.R., Garai, S., and Thakur, G.A., J. Org. Chem., 2017, vol. 82, no. 2, p. 992. https://doi.org/10.1021/acs.joc.6b02521

    Article  CAS  PubMed  Google Scholar 

  111. Ahmed, R., Gupta, R., Akhter, Z., Kumar, M., and Singh, P.P., Org. Biomol. Chem., 2022, vol. 20, no. 24, p. 4942. https://doi.org/10.1039/D2OB00324D

    Article  CAS  PubMed  Google Scholar 

  112. Shinomoto, Y., Yoshimura, A., Shimizu, H., Yamazaki, M., Zhdankin, V.V., and Saito, A., Org. Lett., 2015, vol. 17, no. 21, p. 5212. https://doi.org/10.1021/acs.orglett.5b02543

    Article  CAS  PubMed  Google Scholar 

  113. Guo, J.-Y. Zhong, C.H., He, Z.Y., and Tian, S.K., Asian J. Org. Chem., 2018, vol. 7, no. 1, p. 119. https://doi.org/10.1002/ajoc.201700598

    Article  CAS  Google Scholar 

  114. Borah, A.J. and Phukan, P., Tetrahedron Lett., 2012, vol. 53, no. 24, p. 3035. https://doi.org/10.1016/j.tetlet.2012.04.011

    Article  CAS  Google Scholar 

  115. Katuri, J.V.P. and Nagarajan, K., Tetrahedron Lett., 2019, vol. 60, no. 7, p. 552. https://doi.org/10.1016/j.tetlet.2019.01.025

    Article  CAS  Google Scholar 

  116. Rosa, N.S., Glachet, T., Ibert, Q., Lohier, J.F., Franck, X., and Reboul, V., Synthesis, 2020, vol. 52, no. 14, p. 2099. https://doi.org/10.1055/s-0040-1707103

    Article  CAS  Google Scholar 

  117. Moriyama, K., Ishida, K., and Togo, H., Org. Lett., 2012, vol. 14, no. 3, p. 946. https://doi.org/10.1021/ol300028j

    Article  CAS  PubMed  Google Scholar 

  118. Zhang, G., Cui, Y., Zhao, Y., Cui, Y., Bao, S., and Ding, C., ChemistrySelect, 2020, vol. 5, no. 26, p. 7817. https://doi.org/10.1002/slct.202002270

    Article  CAS  Google Scholar 

  119. Abdel Hafez, E.S.M., Aly, O.M., AbuoRahma, G.E.D.A., and King, S.B., Adv. Synth. Catal., 2014, vol. 356, no. 16, p. 3456. https://doi.org/10.1002/adsc.201400170

    Article  CAS  Google Scholar 

  120. Wang, C.H., Hsieh, T.H., Lin, C.C., Yeh, W.H., Lin, C.A., and Chien, T.C., Synlett, 2015, vol. 26, no. 13, p. 1823. https://doi.org/10.1055/s-0034-1381007

    Article  CAS  Google Scholar 

  121. Patel, O.P., Rangan, K., and Kumar, A., Tetrahedron Lett., 2019, vol. 60, no. 33, 150939. https://doi.org/10.1016/j.tetlet.2019.07.030

  122. Fier, P.S., Kim, S., and Cohen, R.D., J. Am. Chem. Soc., 2020, vol. 142, no. 19, p. 8614. https://doi.org/10.1021/jacs.0c03537

    Article  CAS  PubMed  Google Scholar 

  123. Bystrov, D.M., Zhilin, E.S., Fershtat, L.L., Romanova, A.A., Ananyev, I.V., and Makhova, N.N., Adv. Synth. Catal., 2018, vol. 360, no. 16, p. 3157. https://doi.org/10.1002/adsc.201800407

    Article  CAS  Google Scholar 

  124. Prokhorov, A.M., Kozhevnikov, D.N., Rusinov, V.L., and Chupakhin, O.N., Russ. Chem. Bull., 2003, vol. 52, p. 1195. https://doi.org/10.1023/A:1024729912415

    Article  CAS  Google Scholar 

  125. Rassadin, V.A., Zimin, D.P., Raskil’dina, G.Z., Ivanov, A.Y., Boyarskiy, V.P., Zlotskii, S.S., and Kukushkin, V.Yu., Green Chem., 2016, vol. 18, no. 24, p. 6630. https://doi.org/10.1039/C6GC02556K

    Article  CAS  Google Scholar 

  126. Geyl, K., Baykov, S., Tarasenko, M., Zelenkov, L.E., Matveevskaya, V., and Boyarskiy, V.P., Tetrahedron Lett., 2019, vol. 60, no. 40, p. 151108. https://doi.org/10.1016/j.tetlet.2019.151108

    Article  CAS  Google Scholar 

  127. Baykov, S., Mikherdov, A., Novikov, A., Geyl, K., Tarasenko, M., Gureev, M., and Boyarskiy, V., Molecules, 2020, vol. 26, no. 18, p. 5672. https://doi.org/10.3390/molecules26185672

    Article  CAS  Google Scholar 

  128. Baykov, S. and Boyarskiy, V.P., Chem. Heterocycl. Compd., 2020, vol. 56, no. 7, p. 814. https://doi.org/10.1007/s10593-020-02737-x

    Article  CAS  Google Scholar 

  129. **e, L.-Y., Peng, S., Liu, F., Liu, Y.-F., Sun, M., Tang, Z.-L., Jiang, S., Cao, Z., and He, W.-M., ACS Sustain. Chem. Eng., 2019, vol. 7, no. 7, p. 7193. https://doi.org/10.1021/acssuschemeng.9b00200

    Article  CAS  Google Scholar 

  130. Mao, K., Lv, L., and Li, Z., J. Org. Chem., 2023, vol. 88, no. 14, p. 10137. https://doi.org/10.1021/acs.joc.3c00979

    Article  CAS  PubMed  Google Scholar 

  131. Liu, W., Qin, T., **e, W., Zhou, J., Ye, Z., and Yang, X., Angew. Chem. Int. Ed., 2023, vol. 62, no. 27, article e202303430. https://doi.org/10.1002/anie.202303430

  132. El-Naggar, M., Almahli, H., Ibrahim, H.S., Eldehna, W.M., and Abdel-Aziz, H.A., Molecules, 2018, vol. 23, no. 6, p. 1459. https://doi.org/10.3390/molecules23061459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Eldehna, W.M., Hassan, G.S., Al-Rashood, S.T., Al-Warhi, T.,. Altyar, A.E, Alkahtani, H.M., Almehizia, A.A., and Abdel-Aziz, H.A., J. Enzyme Inhib. Med. Chem., 2019, vol. 34, no. 1, p. 322. https://doi.org/10.1080/14756366.2018.1547286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Trivedi, P., Adhikari, N., Amin, S.A., Bobde, Y., Ganesh, R., Jha, T., and Ghosh, B., Eur. J. Pharm. Sci., 2019, vol. 138, 105046. https://doi.org/10.1016/j.ejps.2019.105046

  135. Geyl, K.K., Baykov, S.V., Kalinin, S.A., Bunev, A.S., Troshina, M.A., Sharonova, T.V., Skripkin, M.Yu., Kasatkina, S.O., Presnukhina, S.I., Shetnev, A.A., Krasavin, M.Yu., and Boyarskiy, V.P., Biomedicines, 2022, vol. 10, no. 2. 461. https://doi.org/10.3390/biomedicines10020461

  136. Yang, C., Gong, Y., Gao, Y., Deng, M., Liu, X., Yang, Y., Ling Y., Jia Y., and Zhou, Y., Bioorg. Med. Chem. Lett., 2023, vol. 82, article 129152. https://doi.org/10.1016/j.bmcl.2023.129152

  137. Wei, X.L., Liu, F.R., Liu, J.H., Zhao, H.Y., Zhang, Y., Wang, Z. Q., Qiu, M.-Z., Xu, F., Yu, Q.-Q., Du, Y.-W., Shi, Y.-X., Wang, D.-S., Wang, F.-H., and Xu, R.H., Nat. Commun., 2022, vol. 13, no. 1, 7012. https://doi.org/10.1038/s41467-022-34782-9

  138. Xu, S., Luo, L., Sun, X., Yang, Y., Guo, Q., Jiang, Z., and Wu, Y., Bioorg. Med. Chem., 2023, vol. 78, p. 117133. https://doi.org/10.1016/j.bmc.2022.117133

    Article  CAS  PubMed  Google Scholar 

  139. Nakazawa, Y., Kawano, S., Matsui, J., Funahashi, Y., Tohyama, O., Muto, H., Nakagawa, T., and Matsushima, T., Cancer Sci., 2015, vol. 106, no. 2, p. 201. https://doi.org/10.1111/cas.12581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Huang, T.T., Chen, C.M., Lan, Y.W., Lin, S.S., Choo, K.B., and Chong, K.Y., Int. J. Mol. Sci., 2022, vol. 23, no. 23, p. 14884. https://doi.org/10.3390/ijms232314884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Fairhurst, R.A., Knoepfel, T., Buschmann, N., Leblanc, C., Mah, R., Todorov, M., Nimsgern, P., Ripoche, S., Niklaus, M., Warin, N., Luu, V.H., Madoerin, M., Wirth, J., Graus-Porta, D., Weiss, A., Kiffe, M., Wartmann, M., Kinyamu-Akunda, J., Sterker, D., Stamm, C., Adler, F., Buhles, A., Schadt, H., Couttet, P., Blank, J., Galuba, I., Trappe, J., Voshol, J., Ostermann, N., Zou, C., Berghausen, J., del Rio Espinola, A., Jahnke, W., and Furet, P., J. Med. Chem., 2020, vol. 63, no. 21, p. 12542. https://doi.org/10.1021/acs.jmedchem.0c01019

    Article  CAS  PubMed  Google Scholar 

  142. Zhang, Y.H., Luo, D.D., Wan, S.B., and Qu, X.J., Pharmacol. Res., 2020, vol. 155, 104717. https://doi.org/10.1016/j.phrs.2020.104717

  143. Luo, D. Zhang, Y., Yang, S., Tian, X., Lv, Y., Guo, Z., Liu, X., Han, G., Liu, S., Wang, W., Cui, S., Qu, X., and Wan, S., Eur. J. Med. Chem., 2021, vol. 225, p. 113775. https://doi.org/10.1016/j.ejmech.2021.113775

    Article  CAS  PubMed  Google Scholar 

  144. Lory, W., Wellslager, B., Sun, C., Yilmaz, Ö., and Yu, H., Int. J. Mol. Sci., 2023, vol. 24, no. 4, p. 3401. https://doi.org/10.3390/ijms24043401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Bielec, B., Schueffl, H., Terenzi, A., Berger, W., Heffeter, P., Keppler, B.K., and Kowol, C.R., Bioorg. Chem., 2020, vol. 99, p. 103778. https://doi.org/10.1016/j.bioorg.2020.103778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Trivedi, A., Wahlstrom, J., Mackowski, M., Dutta, S., and Lee, E., Drug Metab. Dispos., 2021, vol. 49, no. 8, p. 619. https://doi.org/10.1124/dmd.121.000444

    Article  CAS  PubMed  Google Scholar 

  147. Abella, L.M.R., Höhm, C., Hofmann, B., Gergs, U., and Neumann, J., Naunyn. Schmiedebergs. Arch. Pharmacol., 2023, vol. 396, no. 3, p. 499. https://doi.org/10.1007/s00210-022-02333-0

    Article  CAS  PubMed  Google Scholar 

  148. Peng, J., Zhao, L., Wang, L., Chen, H., Qiu, Y., Wang, J., Yang, H., Liu, J., and Liu, H., Eur. J. Med. Chem., 2018, vol. 158, p. 302. https://doi.org/10.1016/j.ejmech.2018.09.014

    Article  CAS  PubMed  Google Scholar 

  149. Semenov, A.V., Tarasova, I.V., Khramov, V.S., Semenova, E.V., Inchina, V.I., and Vakaeva, S.S., Pharm. Chem. J., 2018, vol. 52, no. 3, p. 209. https://doi.org/10.1007/s11094-018-1792-7

    Article  CAS  Google Scholar 

  150. Liu, Y.A. **, Q., Zou, Y., Ding, Q., Yan, S., Wang, Z., Hao, X., Nguyen, B., Zhang, X., Pan, J., Mo, T., Jacobsen, K., Lam, T., Wu, T.Y.-H., Petrassi, H.M., Bursulaya, B., DiDonato, M., Gordon, W.P., Liu, B., Baaten, J., Hill, R., Nguyen-Tran, V., Qiu, M., Zhang, Y.-Q., Kamireddy, A., Espinola, S., Deaton, L., Ha, S., Harb, G., Jia, Y., Li, J., Shen, W., Schumacher, A.M., Colman, K., Glynne, R., Pan, S., McNamara, P., Laffitte, B., Meeusen, S., Molteni, V., and Loren, J., J. Med. Chem., 2020, vol. 63, no. 6, p. 2958. https://doi.org/10.1021/acs.jmedchem.9b01624

    Article  CAS  PubMed  Google Scholar 

  151. Tok, F., Uğraş, Z., Sağlık, B.N., Özkay, Y., Kaplancıklı, Z.A., and Koçyiğit-Kaymakçıoğlu, B., Bioorg. Chem., 2021, vol. 112, 104917. https://doi.org/10.1016/j.bioorg.2021.104917

  152. Luo, Z., Yue, X., Yang, H., Liu, H., Klein, R.S., and Tu, Z., Bioorg. Med. Chem. Lett., 2018, vol. 28, no. 3, p. 488. https://doi.org/10.1016/j.bmcl.2017.12.010

    Article  CAS  PubMed  Google Scholar 

  153. Elkamhawy, A., Park, J.E., Hassan, A.H., Pae, A.N., Lee, J., Park, B.G., and Roh, E.J., Eur. J. Med. Chem., 2018, vol. 144, p. 529. https://doi.org/10.1016/j.ejmech.2017.12.045

    Article  CAS  PubMed  Google Scholar 

  154. Pandolfi, F., De Vita, D., Bortolami, M., Coluccia, A., Di Santo, R., Costi, R., Andrisano, V., Alabiso, F., Bergamini, C., Fato, R., Bartolini, M., and Scipione, L., Eur. J. Med. Chem., 2017, vol. 141, p. 197. https://doi.org/10.1016/j.ejmech.2017.09.022

    Article  CAS  PubMed  Google Scholar 

  155. Shang, Y., Wang, M., Hao, Q., Meng, T., Li, L., Shi, J., Yang, G., Zhang, Z., Yang, K., and Wang, J., Bioorg. Chem., 2022, vol. 128, 106031. https://doi.org/10.1016/j.bioorg.2022.106031

  156. Lu, G.L., Tong, A.S., Conole, D., Sutherland, H.S., Choi, P.J., Franzblau, S.G., Upto, A.M., Lotlikar, M.U., Cooper, C.B., Denny, W.A., and Palmer, B.D., Bioorg. Med. Chem., 2020, vol. 28, no. 22, 115784. https://doi.org/10.1016/j.bmc.2020.115784

  157. Narramore, S., Stevenson, C.E., Maxwell, A., Lawson, D.M., and Fishwick, C.W., Bioorg. Med. Chem., 2019, vol. 27, no. 16, p. 3546. https://doi.org/10.1016/j.bmc.2019.06.015

    Article  CAS  PubMed  Google Scholar 

  158. Ho, S.Y., Wang, W., Ng, F.M., Wong, Y.X., Poh, Z.Y., Tan, S.W.E., Ang, S.H., Liew, S.S., Wong, Y.S.J., Tan, Y., Poulsen, A., Pendharkar, V., Sangthongpitag, K., Manchester, J., Basarab, G., Hill, J., Keller, T.H., and Cherian, J., Eur. J. Med. Chem., 2018, vol. 157, p. 610. https://doi.org/10.1016/j.ejmech.2018.08.025

    Article  CAS  PubMed  Google Scholar 

  159. Wu, J., Wang, C., Leas, D., Vargas, M., White, K.L., Shackleford, D.M., Chen, G., Sanford, A.G., Hemsley, R.M., Davis, P.H., Dong, Y., Charman, S.A., Keiser, J., and Vennerstrom, J.L., Bioorg. Med. Chem. Lett., 2018, vol. 28, no. 3, p. 244. https://doi.org/10.1016/j.bmcl.2017.12.064

    Article  CAS  PubMed  Google Scholar 

  160. de Resende, P.E., Nisler, J., Voller, J., Kadlecová, A., and Gibbons, S., J. Glob. Antimicrob. Resist., 2023, vol. 33, p. 114. https://doi.org/10.1016/j.jgar.2023.02.021

    Article  CAS  PubMed  Google Scholar 

  161. Sugiyama, S. Akiyama, T., Taoda, Y., Iwaki, T., Matsuoka, E., Akihisa, E., Seki, T., Yoshinaga, T., and Kawasuji, T., Bioorg. Med. Chem. Lett., 2021, vol. 33, 127742. https://doi.org/10.1016/j.bmcl.2020.127742

  162. Li, Q., Pellegrino, J., Lee, D.J., Tran, A.A., Chaires, H.A., Wang, R., Park, J.E., Ji, K., Chow, D., Zhang, N., Brilot, A.F., Biel, J.T., van Zundert, G., Borrelli, K., Shinabarger, D., Wolfe, C., Murray, B., Jacobson, M.P., Mühle, E., Chesneau, O., Fraser, J.S., and Seiple, I.B., Nature, 2020, vol. 586, no. 7827, p. 145. https://doi.org/10.1038/s41586-020-2761-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Nefertiti, A.S.G., Batista, M.M., Da Silva, P.B., Batista, D.G.J., Da Silva, C.F., Peres, R.B., TorresSantos, E.C., and Soeiro, M.N.C., Antimicrob. Agents Chemother., 2018, vol. 62, no. 2. https://doi.org/10.1128/aac.01936-17

  164. Luttens, A., Gullberg, H., Abdurakhmanov, E., Vo, D.D., Akaberi, D., Talibov, V.O., Nekhotiaeva, N., Vangeel, L., De Jonghe, S., Jochmans, D., Krambrich, J., Tas, A., Lundgren, B., Gravenfors, Y., Craig, A.J., Atilaw, Y., Sandström, A., Moodie, L.W.K., Lundkvist, Å., van Hemert, M.J., Neyts, J., Lennerstrand, J., Kihlberg, J., Sandberg, K., Danielson, U.H., and Carlsson, J., J. Am. Chem. Soc., 2022, vol. 144, no. 7, p. 2905. https://doi.org/10.1021/jacs.1c08402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Shan, T., Zhang, X., Guo, C., Guo, S., Zhao, X., Yuan, Y., and Yue, T., Dalton Trans., 2021, vol. 69, no. 33, p. 9529. https://doi.org/10.1021/acs.jafc.1c02492

    Article  CAS  Google Scholar 

  166. Garau, A., Bencini, A., Blake, A.J., Caltagirone, C., Conti, L., Isaia, F., Lippolis, V., Montis, R., Mariani, P., and Scorciapino, M.A., Dalton Trans., 2019, vol. 48, no. 15, p. 4949. https://doi.org/10.1039/C9DT00288J

    Article  CAS  PubMed  Google Scholar 

  167. Liu, Y., Chi, C., Wu, R., Huang, Y., Liu, S., Sun, M., Sun, Y., Yang, Z., Chen, H., and Wu, Z., Tetrahedron Lett., 2019, vol. 60, no. 25, p. 1671. https://doi.org/10.1016/j.tetlet.2019.05.042

    Article  CAS  Google Scholar 

  168. Yang, Z., Zhang, W., Liu, X., Zhao, S., Yang, Z., and Jia, X., Inorg. Chem. Commun., 2023, vol. 151, p. 110568. https://doi.org/10.1016/j.inoche.2023.110568

    Article  CAS  Google Scholar 

  169. Mao, S., Shen, T., Zhao, Q., Zhu, S., Han, T., **, X., Ding, F., Wang, H., and Gao, M., Colloids Surf. A. Physicochem. Eng. Asp., 2023, vol. 665, p. 131280. https://doi.org/10.1016/j.colsurfa.2023.131280

    Article  CAS  Google Scholar 

  170. Ghosh, D., Chaudhary, P., Pradeep, A., Singh, S., Rangasamy, J., and Damodaran, K.K., J. Mol. Liq., 2023, vol. 382, 122023. https://doi.org/10.1016/j.molliq.2023.122023

  171. Opie, C.R., Kumagai, N., and Shibasaki, M., Angew. Chem. Int. Ed., 2017, vol. 56, no. 12, p. 3349. https://doi.org/10.1002/ange.201610279

    Article  CAS  Google Scholar 

  172. Chen, H., Liu, Y., Cheng, X., Fang, S., Sun, Y., Yang, Z., Zheng, W., Ji, X., and Wu, Z., Angew. Chem. Int. Ed., 2021, vol. 60, no. 19, p. 10833. https://doi.org/10.1002/anie.202102174

    Article  CAS  Google Scholar 

  173. Tellers, J., Canossa, S., Pinalli, R., Soliman, M., Vachon, J., and Dalcanale, E., Macromolecules, 2018, vol. 51, no. 19, p. 7680. https://doi.org/10.1021/acs.macromol.8b01715

    Article  CAS  Google Scholar 

  174. He, J., Bonnet, C.S., Eliseeva, S.V., Lacerda, S., Chauvin, T., Retailleau, P., Szeremeta, F., Badet, B., Petoud, S., Tóth, É., and Durand, P., J. Am. Chem. Soc., 2016, vol. 138, no. 9, p. 2913. https://doi.org/10.1021/jacs.5b12084

    Article  CAS  PubMed  Google Scholar 

  175. Pollet, R., Bonnet, C.S., Retailleau, P., Durand, P., and Tóth, É., Inorg. Chem., 2017, vol. 56, no. 8, p. 4317. https://doi.org/10.1021/acs.inorgchem.6b02773

    Article  CAS  PubMed  Google Scholar 

  176. Geyl, K.K., Baykov, S.V., Kasatkina, S.O., Savko, P.Y., and Boyarskiy, V.P., J. Organomet. Chem., 2022, vol. 980, p. 122518. https://doi.org/10.1016/j.jorganchem.2022.122518

    Article  CAS  Google Scholar 

  177. Dobrynin, M.V., Kasatkina, S.O., Baykov, S.V., Savko, P.Y., Antonov, N.S., Mikherdov, A.S., Boyarskiy, V.P., and Islamova, R.M., Dalton Trans., 2021, vol. 50, no. 42, p. 14994. https://doi.org/10.1039/D1DT02823E

    Article  CAS  PubMed  Google Scholar 

  178. Dobrynin, M.V., Kasatkina, S.O., Baykov, S.V., Savko, P.Yu., Antonov, N.S., Mikherdov, A.S., Boyarskiy, V.P., and Islamova, R.M., Russ. J. Gen. Chem., 2022, vol. 92, no. 1, p. 79. https://doi.org/10.1134/S107036322201011X

    Article  CAS  Google Scholar 

  179. Geyl, K.K., Baykova, S.O., Andoskin, P.A., Sharoyko, V.V., Eliseeva, A.A., Baykov, S.V., Semenov, K.N., and Boyarskiy, V.P., Inorganics, 2022, vol. 10, no. 12, p. 247. https://doi.org/10.3390/inorganics10120247

    Article  CAS  Google Scholar 

  180. Huang, C., Yi, X.-M., Chen, D.-M., and Zhu, B.-X., Inorg. Chim. Acta, 2018, vol. 476, p. 123. https://doi.org/10.1016/j.ica.2018.01.028

    Article  CAS  Google Scholar 

  181. Biswas, P. and Dastidar, P., Inorg. Chem., 2021, vol. 60, no. 5, p. 3218. https://doi.org/10.1021/acs.inorgchem.0c03550

    Article  CAS  PubMed  Google Scholar 

  182. Pandurangan, K., Kitchen, J.A., Blasco, S., Paradisi, F., and Gunnlaugsson, T., Chem. Commun., 2014, vol. 50, no. 74, p. 10819. https://doi.org/10.1039/C4CC04028G

    Article  CAS  Google Scholar 

  183. Sudhakaran Jayabhavan, S., Ghosh, D., and Damodaran, K.K., Molecules, 2021, vol. 26, no. 21, p. 6420. https://doi.org/10.3390/molecules26216420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Biswas, P., Ganguly, S., and Dastidar, P., Chem. Asian J., 2018, vol. 13, no. 15, p. 1941. https://doi.org/10.1002/asia.201800743

    Article  CAS  Google Scholar 

  185. Chandramouli, N., Ferrand, Y., Kauffmann, B., and Huc, I., Chem. Commun., 2016, vol. 52, no. 20, p. 3939. https://doi.org/10.1039/C6CC00190D

    Article  CAS  Google Scholar 

  186. Saha, S., Kauffmann, B., Ferrand, Y., and Huc, I., Angew. Chem. Int. Ed., 2018, vol. 57, no. 41, p. 13542. https://doi.org/10.1002/anie.201808370

    Article  CAS  Google Scholar 

Download references

Funding

The work was financially supported by the Russian Science Foundation (project no. 22-73-10031).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. P. Boyarskiy.

Ethics declarations

V.P. Boyarskiy is the Guest Editor of the Special Issue of the Russian Journal of General Chemistry. The other authors declare no conflict of interest.

Additional information

To the 300th Anniversary of the founding of St. Petersburg University

Publisher's Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baykova, S.O., Baykov, S.V. & Boyarskiy, V.P. Pyridyl-Substituted Ureas and Carbamates: Synthesis and Application (A Review). Russ J Gen Chem 94 (Suppl 1), S60–S90 (2024). https://doi.org/10.1134/S1070363224140093

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070363224140093

Keywords:

Navigation