Log in

Effect of N-Acetylcysteine on Cu2+(Fe2+)/H2O2-Mediated Free-Radical Fragmentation of Glycerophosphate in the Presence of Biologically Active Compounds

  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

The effect of N-acetylcysteine on homolytic fragmentation of β-glycerophosphate with cleavage of the phosphoester bond has been studied. It has been shown that N-acetylcysteine activates the fragmentation induced by Cu2+(Fe2+)–H2O2 and inhibits the radiation-induced process. The stimulating effect of N-acetylcysteine towards Cu2+/H2O2-mediated fragmentation in the presence of compounds affecting the HO level, the Cu2+/Cu+ ratio, or interacting with thiol is either enhanced (Trolox, Ubiquinone Q0) or switched to the protective one (NaN3, Met, ascorbate). In the presence of Fe2+, Trolox, unlike Q0, has reduced the stimulating effect of N-acetylcysteine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Scheme
Scheme
Scheme
Fig. 1.
Scheme
Fig. 2.
Fig. 3.

REFERENCES

  1. Šalamon, Š., Kramar, B., Marolt, T.P., Poljšak, B., and Milisav, I., Antioxidants, 2019, vol. 8, p. 111. https://doi.org/10.3390/antiox8050111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Tenório, M.C.d.S., Graciliano, N.G., Moura, F.A., Oliveira, A.C.M.d., and Goulart, M.O.F., Antioxidants, 2021, vol. 10, p. 967. https://doi.org/10.3390/antiox10060967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Aldini, G., Altomare, A., Baron, G., Vistoli, G., Carini, M., and Borsani, L., Sergio, F., Free Radic. Res., 2018, vol. 52, p. 751. https://doi.org/10.1080/10715762.2018.1468564

    Article  CAS  PubMed  Google Scholar 

  4. Zafarullah, M., Li, W.Q., Sylvester, J., and Ahmad, M., Cell Mol. Life Sci., 2003, vol. 60, p. 6. https://doi.org/10.1007/s000180300001

    Article  CAS  PubMed  Google Scholar 

  5. Di Marco, F., Foti, G., and Corsico, A.G., Eur. Rev. Med. Pharmacol. Sci., 2022, vol. 26, p. 715. https://doi.org/10.26355/eurrev_202201_27898

    Article  CAS  PubMed  Google Scholar 

  6. De Flora, S., Cesarone, C.F., Balansky, R.M., Albini, A., D’Agostini, F., Bennicelli, C., Bagnasco, M., Camoirano, A., Scatolini, L., Rovida, A., and Izzotti, A., J. Cell. Biochem., 1995, vol. 22 (S22), p. 33. https://doi.org/10.1002/jcb.240590806

    Article  CAS  Google Scholar 

  7. Kwon, Y., Antioxidants, 2021, vol. 10, p. 169. https://doi.org/10.3390/antiox10020169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Azzi, A., Antioxidants, 2022, vol. 11, p. 1431. https://doi.org/10.3390/antiox11081431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Oxidative Stress: Eustress and Distress, Sies, H., Ed., London: Academic Press, 2020, p. 3. https://doi.org/10.1016/b978-0-12-818606-0.00001-8

  10. Samuni, Y., Goldstein, S., Dean, O.M., and Berk, M., Biochim. Biophys. Acta, 2013, vol. 1830, p. 4117. https://doi.org/10.1016/j.bbagen.2013.04.016

    Article  CAS  PubMed  Google Scholar 

  11. Pedre, B., Barayeu, U., Ezeriņa, D., and Dick, T.P., Pharmacol. Ther., 2021, vol. 228, p. 107916. https://doi.org/10.1016/j.pharmthera.2021.107

    Article  CAS  PubMed  Google Scholar 

  12. Stelmashook, E.V., Genrikhs, E.E., Kapkaeva, M.R., Zelenova, E.A., and Isaev, N.K., Biochem., 2017, vol. 82, p. 1176. https://doi.org/10.1134/S0006297917100108

    Article  CAS  Google Scholar 

  13. Mlejnek, P., Dolezel, P., Kriegova, E., and Pastvova, N., Int. J. Mol. Sci., 2021, vol. 22, p. 12635. https://doi.org/10.3390/ijms222312635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Sagrista, M., Garcia, A., De Madariaga, M., and Mora, M., Free Radic. Res., 2002, vol. 36, p. 329. https://doi.org/10.1080/10715760290019354

    Article  CAS  PubMed  Google Scholar 

  15. Halliwell, B. and Gutteridge, J.M.C., Free Radicals in Biology and Medicine, Oxford: University Press, 2012.

  16. Valko, M., Jomova, K., Rhodes, C.J., Kuca, K., and Musílek, K., Arch. Toxicol., 2016, vol. 90, p. 1. https://doi.org/10.1007/s00204-015-1579-5

    Article  CAS  PubMed  Google Scholar 

  17. Halliwell, B., Adhikary, A., Dingfelder, M., and Dizdaroglu, M., Chem. Soc. Rev., 2021, vol. 50, p. 8355. https://doi.org/10.1039/D1CS00044F

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lenzen, S., Lushchak, V.I., and Scholz, F., Arch. Toxicol., 2022, vol. 96, p. 1915. https://doi.org/10.1007/s00204-022-03282-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Parvez, S., Long, M.J.C., Poganik, J.R., and Aye, Y., Chem. Rev., 2018, vol. 118, p. 8798. https://doi.org/10.1021/acs.chemrev.7b00698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Buxton, G.V., Greenstock, C.L., Helman, W.P., and Ross, A.B., J. Phys. Chem. Ref. Data, 1988, vol. 17, no. 2, p. 513. https://doi.org/10.1063/1.555805

    Article  CAS  Google Scholar 

  21. Martinez, M., Hernandez, A.I., and Martinez, N., Brain Res., 2000, vol. 855, p. 100.

    Article  CAS  PubMed  Google Scholar 

  22. Yajima, D., Motani, H., Hayakawa, M., Sato, Y., Sato, K., and Iwase, H., Cell Biochem. Funct., 2009, vol. 27, p. 338. https://doi.org/10.1002/cbf.1578

    Article  CAS  PubMed  Google Scholar 

  23. Yurkova, I.L., Russ. Chem. Rev., 2012, vol. 81, no. 2, p. 175. https://doi.org/10.1070/RC2012v081n02ABEH004205

    Article  CAS  Google Scholar 

  24. Mailloux, R.J., Antioxidants, 2020, vol. 9, p. 472. https://doi.org/10.3390/antiox9060472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Yurkova, I., Arnhold, J., and Huster, D., Chem. Phys. Lipids, 2009, vol. 158, no. 1, p. 16. https://doi.org/10.1016/j.chemphyslip.2008.09.005

    Article  CAS  PubMed  Google Scholar 

  26. Yurkova, I.L., Arnhold, J., Fitzl, G., and Huster, D., Chem. Phys. Lipids, 2011, vol. 164, p. 393. https://doi.org/10.1016/j.chemphyslip.2011.05.006

    Article  CAS  PubMed  Google Scholar 

  27. Olshuk, V.N., Melsitova, I.V., and Yurkova, I.L., Chem. Phys. Lipids, 2014, vol. 177, p. 1. https://doi.org/10.1016/j.chemphyslip.2013.10.010

    Article  CAS  Google Scholar 

  28. Schuchmann, M.N., Scholes, M.L., Zegota, H., and von Sonntag, C., Int. J. Radiat. Biol., 1995, vol. 68, no. 2, p. 121. https://doi.org/10.1080/09553009514551021

    Article  CAS  PubMed  Google Scholar 

  29. Kisel, M.A., Shadyro, O.I., and Yurkova, I.L., High Energy Chem., 1997, vol. 31, no. 2, p. 80.

    CAS  Google Scholar 

  30. Pototskaya, T.A., Shadyro, O.I., and Yurkova, I.L., High Energy Chem., 2004, vol. 38, no. 1, p. 2.

    Article  CAS  Google Scholar 

  31. Noszál, B., Visky, D., and Kraszni, M., J. Med. Chem., 2000, vol. 43, p. 2176. https://doi.org/10.1021/jm9909600

    Article  CAS  PubMed  Google Scholar 

  32. Winterbourn, C.C. and Metodiewa, D., Free Radic. Biol. Med., 1999, vol. 27, p. 322. https://doi.org/10.1016/s0891-5849(99)00051-9

    Article  CAS  PubMed  Google Scholar 

  33. Zinatullina, K.M., Kasaikina, O.T., Motyakin, M.V., Ionova, I.S., Degtyarev, E.N., and Khrameeva, N.P., Russ. Chem. Bull., 2020, vol. 69, no. 10, p. 1865. https://doi.org/10.1007/s11172-020-2971-8

    Article  CAS  Google Scholar 

  34. Zinatullina, K.M., Orekhova, A.V., Kasaikina, O.T., Khrameeva, N.P., Berezin, M.P., and Rusina, I.F., Russ. Chem. Bull., 2021, vol. 70, no. 10, p. 1934. https://doi.org/10.1007/s11172-021-3299-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Shendikova, E.N., Mel’sitova, I.V., and Yurkova, I.L., High Energy Chem., 2017, vol. 51, no. 5, p. 363.

    Article  CAS  Google Scholar 

  36. Schöneich, C., Asmus, K.-D., and Bonifačić, M., J. Chem. Soc. Faraday Trans., 1995, vol. 91, p. 1923. https://doi.org/10.1039/ft9959101923

    Article  Google Scholar 

  37. Murphy, J.M., Dissertation (Chem.), 2018. https://tigerprints.clemson.edu/all_dissertations/2201

  38. Milach, O.A., Mel’sitova, I.V., and Yurkova, I.L., Russ. J. Gen. Chem., 2020, vol. 90, no. 6, p. 987. https://doi.org/10.1134/S1070363220060080

    Article  CAS  Google Scholar 

  39. Shen, J., Griffiths, P.T., Campbell, S.J., Utinger, B., Kalberer, M., Paulson, S.E., Sci Rep., 2021, vol. 11, p. 7417. https://doi.org/10.1038/s41598-021-86477-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. D’Agostini, F., Balansky, R.M., Camoirano, A., and de Flora, S., Int. J. Cancer., 2000, vol. 88, p. 702. https://doi.org/10.1002/1097-0215(20001201)88:5<702::aid-ijc4>3.0.co;2-3

    Article  PubMed  Google Scholar 

  41. Mel’sitova, I.V. and Yurkova, I.L., High Energy Chem., 2015, vol. 49, no. 3, p. 133. https://doi.org/10.1134/S001814391503011X

    Article  CAS  Google Scholar 

  42. Davies, M.J., Forni, L.G., and Willson, R.L., Biochem. J., 1988, vol. 255, p. 513.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Burkitt, M.J. and Milne, L., FEBS Lett., 1996, vol. 379, p. 51.

    Article  CAS  PubMed  Google Scholar 

  44. Gyulkhandanyan, A.V., Feeney, C.J., and Pennefather, P.S., J. Neurochem., 2003, vol. 87, p. 448. https://doi.org/10.1046/j.1471-4159.2003.02029.x

    Article  CAS  PubMed  Google Scholar 

  45. Albertini, R. and Abuja, P.M., Free Rad. Res., 1999, vol. 30, p. 181. https://doi.org/10.1080/10715769900300201

    Article  CAS  Google Scholar 

  46. Lu, N., Chen, W., and Peng, Y.-Y., Eur. J. Pharmacol., 2011, vol. 659, p. 95. https://doi.org/10.1016/j.ejphar.2011.03.009

    Article  CAS  PubMed  Google Scholar 

  47. Tafazoli, S., Wright, J.S., and O’Brien, P.J., Chem. Res. Toxicol., 2005, vol. 18, p. 1567. https://doi.org/10.1021/tx0500575

    Article  CAS  PubMed  Google Scholar 

  48. James, A.M., Smith, R.A.J., and Murphy, M.P., Arch. Biochem. Biophys., 2004, vol. 423, p. 47. https://doi.org/10.1016/j.abb.2003.12.025

    Article  CAS  PubMed  Google Scholar 

  49. Land, E.J. and Swallow, A.J., J. Biol. Chem., 1970, vol. 245, p. 1890. https://doi.org/10.1016/S0021-9258(18)63182-5

    Article  CAS  PubMed  Google Scholar 

  50. Takahashi, T., Mine, Y., and Okamoto, T., Biol. Pharm. Bull., 2018, vol. 41, p. 1809. https://doi.org/10.1248/bpb.b18-00497

    Article  CAS  PubMed  Google Scholar 

  51. Takahashi, N., Schreiber, J., Fischer, V., and Mason, R.P., Arch. Biochem. Biophys., 1987, vol. 252, p. 41. https://doi.org/10.1016/0003-9861(87)90006-3

    Article  CAS  PubMed  Google Scholar 

  52. Kutyrev, A.A. and Moskva, V.V., Russ. Chem. Rev., 1991, vol. 60, p. 72. https://doi.org/10.1070/RC1991v060n01ABEH001032

    Article  Google Scholar 

  53. Thornton, D.E., Jones, K.H., Jiang, Z., Zhang, H., Liu, G., and Cornwell, D.G., Free Rad. Biol. Med., 1995, vol. 18, p. 963. https://doi.org/10.1016/0891-5849(94)00210-b

    Article  CAS  PubMed  Google Scholar 

  54. Varlamov, V.T., Krisyuk, B.E., and Grigorev, V.Y., Russ. Chem. Bull., 2018, vol. 67, no. 10, p. 1851. https://doi.org/10.1007/s11172-018-2298-x

    Article  CAS  Google Scholar 

  55. Beyer, R.E., Biochem. Cell Biol., 1992, vol. 70, p. 390. https://doi.org/10.1139/o92-061

    Article  CAS  PubMed  Google Scholar 

  56. Gin, F.J. and Morales, F., Anal. Biochem., 1977, vol. 77, no. 1, p. 10.

    Article  Google Scholar 

  57. Page, S.E., Arnold, W.A., and McNeill, K., J. Environ. Monit., 2010, vol. 9, no. 12, p. 1658. https://doi.org/10.1039/c0em00160k

    Article  CAS  Google Scholar 

Download references

Funding

This study was performed in the scope of the State Research Program of Belarus Republic “Chemical Processes, Reagents, and Technologies, Bioregulators, and Bioorganic Chemistry” (project no. 2.2.03.04).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. L. Yurkova.

Ethics declarations

Authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ovsyannikova, E.M., Soloninkina, I.O. & Yurkova, I.L. Effect of N-Acetylcysteine on Cu2+(Fe2+)/H2O2-Mediated Free-Radical Fragmentation of Glycerophosphate in the Presence of Biologically Active Compounds. Russ J Gen Chem 93, 1711–1720 (2023). https://doi.org/10.1134/S1070363223070113

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070363223070113

Keywords:

Navigation