Log in

Development of Doxorubicin Complex with Nanoparticles Based on Sodium Alginate and Viologen Calix[4]resorcinol to Enhance Selectivity of the Cytotoxic Action

  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

A biocompatible supramolecular system based on sodium alginate and viologen calix[4]resorcinol for encapsulation of doxorubicin hydrochloride (DOX) has been obtained. Using a set of physicochemical methods, the polymer–macrocycle ratio, at which stable nanoparticles are formed, has been found and their morphological characteristics have been determined. It has been shown that the increase in the concentration of calix[4]resorcinol leads to the increase in the size of nanoparticles, their zeta potential being changed from negative to positive values. It has been established that the optimal supramolecular system for DOX binding is a composition with a macrocycle–polymer ratio of 1 : 50, and a change in the components ratio can induce the drug release. The effect of encapsulated DOX on the physicochemical and biological properties of the supramolecular system has been shown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

REFERENCES

  1. Designed Molecular Space in Material Science and Catalysis, Shirakawa, S., Ed., Singapore: Springer, 2018, p. 183.

  2. Mirgorodskaya, A.B., Kushnazarova, R.A., Lenina, O.A., Petrov, K.A., and Zakharova, L.Ya., Russ. J. Gen. Chem., 2023, vol. 93, p. 593. https://doi.org/10.1134/S1070363223030167

    Article  CAS  Google Scholar 

  3. Kushnazarova, R.A., Mirgorodskaya, A.B., Mikhailov, V.A., Belousova, I.A., Zubareva, T.M., Prokop’eva, T.M., Voloshina, A.D., Amerhanova, S.K., and Zakharova, L.Y., Russ. J. Gen. Chem., 2022, vol. 92, no. 4, p. 659. https://doi.org/10.1134/S1070363222040077

    Article  CAS  Google Scholar 

  4. Wang, J., Ding, X., and Guo, X., Adv. Colloid Interface Sci., 2019, vol. 269, p. 187. https://doi.org/10.1016/j.cis.2019.04.004

    Article  CAS  PubMed  Google Scholar 

  5. Antipin, I.S., Alfimov, M.V., Arslanov, V.V., Burilov, V.A., Vatsadze, S.Z., Voloshin, Ya.Z., Volcho, K.P., Gorbatchuk, V.V., Gorbunova, Yu.G., Gromov, S.P., Dudkin, S.V., Zaitsev, S.Yu., Zakharova, L.Ya., Ziganshin, M.A., Zolotukhina, A.V., Kalinina, M.A., Karakhanov, E.A., Kashapov, R.R., Koifman, O.I., Konovalov, A.I., Korenev, V.S., Maksimov, A.L., Mamardashvili, N.Zh., Mamardashvili, G.M., Martynov, A.G., Mustafina, A.R., Nugmanov, R.I., Ovsyannikov, A.S., Padnya, P.L., Potapov, A.S., Selektor, S.L., Sokolov, M.N., Solovieva, S.E., Stoikov, I.I., Stuzhin, P.A., Suslov, E.V., Ushakov, E.N., Fedin, V.P., Fedorenko, S.V., Fedorova, O.A., Fedorov, Yu.V., Chvalun, S.N., Tsivadze, A.Yu., Shtykov, S.N., Shurpik, D.N., Shcherbina, M.A., and Yakimova, L.S., Russ. Chem. Rev., 2021, vol. 90, no. 8, p. 895. https://doi.org/10.1070/RCR5011

    Article  Google Scholar 

  6. Kashapov, R.R., Mirgorodskaya, A.B., Kuznetsov, D.M., Razuvaeva, Yu.S., and Zakharova, L.Ya., Colloid J., 2022, vol. 84, p. 502. https://doi.org/10.1134/S1061933X22700016

    Article  CAS  Google Scholar 

  7. Razuvayeva, Y., Kashapov, R., and Zakharova, L., Supramol. Chem., 2020, vol. 32, no. 3, p. 178. https://doi.org/10.1080/10610278.2020.1725515

    Article  CAS  Google Scholar 

  8. Peng, S., Wang, K., Guo, D.S., and Liu, Y., Soft Matter., 2015, vol. 11, p. 290. https://doi.org/10.1039/c4sm02170c

    Article  CAS  PubMed  Google Scholar 

  9. Wang, K., Guo, D.-S., Zhao, M.-Y., and Liu, Y., Chem. Eur. J., 2016, vol. 22, p. 1475. https://doi.org/10.1002/chem.201303963

    Article  CAS  PubMed  Google Scholar 

  10. Harangozó, J.G., Wintgens, V., Miskolczy, Z., Amiel, C., and Biczók, L., Colloid. Polym. Sci., 2016, vol. 294, p. 1807. https://doi.org/10.1007/s00396-016-3947-y

    Article  CAS  Google Scholar 

  11. Wintgens, V., Guigner, J.-M., Miskolczy, Z., Amiel, C., and Biczók, L., Carbohydr. Polym., 2019, vol. 223, p. 115071. https://doi.org/10.1016/j.carbpol.2019.115071

    Article  CAS  PubMed  Google Scholar 

  12. **, G., Ngo, H.V., Cui, J.H., Wang, J., Park, C., and Lee, B.J., Pharmaceutics, 2021, vol. 13, p. 662. https://doi.org/10.3390/pharmaceutics13050662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hwang, E., Seo, S., Bak, S., Lee, H., Min, M., and Lee, H., Adv. Mater., 2014, vol. 26, p. 5129. https://doi.org/10.1002/adma.201401201

    Article  CAS  PubMed  Google Scholar 

  14. Frent, O.D., Vicas, L.G., Duteanu, N., Morgovan, C.M., Jurca, T., Pallag, A., Muresan, M.E., Filip, S.M., Lucaciu, R.L., and Marian, E., Int. J. Mol. Sci., 2022, vol. 23, p. 12108. https://doi.org/10.3390/ijms232012108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kashapov, R., Razuvayeva, Y., Ziganshina, A., Sapunova, A., Lyubina, A., Amerhanova, S., Kulik, N., Voloshina, A., Nizameev, I., Salnikov, V., and Zakharova, L., J. Mol. Liq., 2022, vol. 345, p. 117801. https://doi.org/10.1016/j.molliq.2021.117801

    Article  CAS  Google Scholar 

  16. Yoncheva, K., Merino, M., Shenol, A., Daskalov, N.T., Petkov, P.S., Vayssilov, G.N., and Garrido, M.J., Int. J. Pharm., 2019, vol. 556, p. 1. https://doi.org/10.1016/j.ijpharm.2018.11.070

    Article  CAS  PubMed  Google Scholar 

  17. Xue, Y., **a, X., Yu, B., Luo, X., Cai, N., Long, S., Yu, F., RSC Adv., 2015, vol. 5, p. 73416. https://doi.org/10.1039/c5ra13313k

    Article  CAS  Google Scholar 

  18. Munnier, E., Tewes, F., Cohen-Jonathan, S., Linassier, C., Douziech-Eyrolles, L., Marchais, H., Soucé, M., Hervé, K., Dubois, P., and Chourpa, I., Chem. Pharm. Bull., 2007, vol. 55, p. 1006. https://doi.org/10.1248/cpb.55.1006

    Article  CAS  Google Scholar 

  19. Smolobochkin, A.V., Gazizov, A.S., Yakhshilikova, L.J., Bekrenev, D.D., Burilov, A.R., Pudovik, M.A., Lyubina, A.P., Amerhanova, S.K., and Voloshina, A.D., Chem. Biodivers., 2022, vol. 19, p. e202100970. https://doi.org/10.1002/cbdv.202100970

Download references

Funding

This study was financially supported by Russian Science Foundation (project no. 22-73-10050).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. R. Kashapov.

Ethics declarations

L.Ya. Zakharova is a member of Editorial Board of Russian Journal of General Chemistry. Other authors declare that they have no conflicts of interest.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kashapov, R.R., Razuvayeva, Y.S., Ziganshina, A.Y. et al. Development of Doxorubicin Complex with Nanoparticles Based on Sodium Alginate and Viologen Calix[4]resorcinol to Enhance Selectivity of the Cytotoxic Action. Russ J Gen Chem 93, 1409–1419 (2023). https://doi.org/10.1134/S1070363223060129

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070363223060129

Keywords:

Navigation