Log in

Effect of Pyridine on the Electrochemical Parameters of the Hydroxonium Discharge on a Zinc Cathode

  • Selected articles originally published in Russian in Rossiiskii Khimicheskii Zhurnal (Russian Chemistry Journal)
  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

The problem of the corrosion in acidic and aqueous media, primarily on metals of the “iron” group, has evoked numerous studies related to the discharge of hydrogen cations. It has been shown that inhibitor adsorption can noticeably affect the process of hydrogen evolution during corrosion of metals with hydrogen depolarization. Such inhibitors include pyridine, which is present in zinc electrolysis solutions. As it was shown earlier, pyridine negatively affects the current efficiency of zinc and the quality of the cathode metal. We studied the electrochemical reduction of hydrogen (hydronium ion) from acidic aqueous solutions in the presence of a surfactant (pyridine on a zinc cathode). The electroreduction of hydrogen cations was studied under conditions of intense mixing using a magnetic stir bar that removed gas bubbles from the cathode surface. The studies were carried out in solutions of sulfuric acid grade OSCh (0.9; 0.18; 0.36 M) with the addition of pyridine from 1.4 to 8.4×10–3 M. Potentiostatic studies were carried out on a potentiostat “P-30Jcom Elins” using a three-electrode cell. In potentiometric measurements, the results are presented according to the average data obtained over 30 s of electrolysis in the potential range (–950 to 1100 mV for AgCl/Ag). In galvanostatic measurements at current densities from 0 to 110 mA/cm2, the results are presented by average data obtained in initial 5 s of the process. It is shown that with an increase in the content of sulfuric acid in the electrolyte and the cathode potential, the current density increases. When pyridine was added to the electrolyte, a decrease in the cathode current density was recorded, as in earlier studies on the electroreduction of zinc in the presence of the above organic matter. Moreover, the deceleration of the hydrogen discharge with the addition of pyridine increased with an increase in the acidity of the electrolyte and the cathode potential. We calculated the order of the discharge reaction by hydroxonium ions. This allowed us to make an assumption that the process is characterized by mixed kinetics with the initial stage of obtaining atomic hydrogen according to the scheme: H3O+ e → H0 + H2O. The decrease in the order of the hydrogen reduction reaction with the addition of pyridine is explained by the transformations that occur with this compound during electrolysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. Ponomarev, D.A., Plotnikova, M.D., Shein, A.B., and Rubtsov, A.E., Vestn. Perm. Univ., Ser. Khim., 2018, no. 3(31), pp. 349–359. https://doi.org/10.17072/2223-1838-2018-3-349-359

    Article  Google Scholar 

  2. Shein, A.B., Plotnikova, M.D., and Rubtsov, A.E., ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.], 2019, vol. 62, no. 7, pp. 123–129. https://doi.org/10.6060/ivkkt.20196207.5968

  3. Vigdorovich, V.I., Tsygankova, L.E., Balybin, D.V., Kichigin, V.I., and Kryl’skii, D.V., Russ. J. Electrochem., 2013, vol. 49, no. 11, pp. 1045–1052. https://doi.org/10.7868/S0424857013110133

    Article  CAS  Google Scholar 

  4. Mokrushin, M.A., Shein, A.B., and Rubtsov, A.E., Vestn. Perm. Univ., Ser. Khim., 2017, vol. 27, no. 3, pp. 271–278. https://doi.org/10.17072/2223-1838-2017-3-271-278

    Article  Google Scholar 

  5. Rybalka, K.V., Beketaeva, L.A., and Davydov, A.D., Russ. J. Electrochem., 2016, vol. 52, no. 3, pp. 268–272. https://doi.org/10.7868/S0424857016030099

    Article  CAS  Google Scholar 

  6. Rybalka, K.V., Beketaeva, L.A., and Davydov, A.D., Russ. J. Electrochem., 2016, vol. 52, no. 10, pp. 921–924. https://doi.org/10.7868/S042485701610110

    Article  CAS  Google Scholar 

  7. Rybalka, K.V., Beketaeva, L.A., and Davydov, A.D., Russ. J. Electrochem., 2014, vol. 50, no. 2, pp. 108–113. https://doi.org/10.7868/S0424857014020030

    Article  CAS  Google Scholar 

  8. Kuznetsov, V.V., Zhalnerov, M.V., Batalov, R.S., Gamburg, Y.D., and Zhulikov, V.V., Russ. J. Electrochem., 2016, vol. 52, no. 9, pp. 901–909. https://doi.org/10.7868/S0424857016090061

    Article  CAS  Google Scholar 

  9. Solmaz, R., Kardas, G., Gulha, M., Yazici, B., and Erbil, M., Electrochim. Acta, 2008, vol. 53, pp. 5941–5952. https://doi.org/10.1016/j.electacta.2008.03.055

    Article  CAS  Google Scholar 

  10. Solmaz, R., Kardas, G., Yazici, B., and Erbil, M., Colloid. Surf. A: Physicochem. Eng. Asp., 2008, vol. 312, pp. 7–17. https://doi.org/10.1016/j.colsurfa.2007.06.035

    Article  CAS  Google Scholar 

  11. McCrory, C.L., Jung, S., Ferrer, I.M., Chatman, Sh.M., Peters, J.C., and Jaramillo, T.F., J. Am. Chem. Soc., 2015, vol. 137, p. 4347. https://doi.org/10.1021/ja510442p

    Article  CAS  PubMed  Google Scholar 

  12. Nikolic, V.M., Maslovara, S.Lj., Tastc, G.S., Brdaric, T.P., Lausevic, P.Z., Radak, B.B., and Kaninski, M.P.M., Appl. Catal. B: Environ., 2015, vol. 179, p. 88. https://doi.org/10.1016/j.apcatb.2015.05.012

    Article  CAS  Google Scholar 

  13. Safizaden, F., Ghalt, E., and Houlachi, G., Int. J. Hydr. Energy., 2015, vol. 40, p. 256. https://doi.org/10.1016/j.ijhydene.2014.10.109

    Article  CAS  Google Scholar 

  14. Jaksic, M.M., Electrochim. Acta, 1984, vol. 29, p. 1539. https://doi.org/10.1016/0013-4686(84)85007-0

    Article  CAS  Google Scholar 

  15. Paloukis, F., Zafeiratos, S., Drakopoulos, V., and Neophytides, S.G., Electrochim. Acta, 2008, vol. 53, pp. 8015. https://doi.org/10.1016/j.electacta.2008.05.045

    Article  CAS  Google Scholar 

  16. Elezovtc, N.R., Joviic, V.D., and Kristafiic, N.V., Electrochim. Acta, 2005, vol. 50, p. 5594. https://doi.org/10.1016/j.electacta.2005.03.037

    Article  CAS  Google Scholar 

  17. Kichigin, V.I. and Shein, A.B., Electrochim. Acta, 2016, vol. 201, p. 233. https://doi.org/10.1016/j.electacta.2016.03.194

    Article  CAS  Google Scholar 

  18. Kuznetsov, V.V., Hamburg, Yu.D., Batalov, R.S., Zhulikov, V.V., and Zaitsev, V.A., Russ. J. Electrochem., 2018, vol. 54, no. 7, pp. 686–692. https://doi.org/10.1134/SO424857018070058

    Article  Google Scholar 

  19. Kolesnikov, A.V. and Ageenko, E.I., Butlerov Commun., 2019, vol. 60, no. 12, pp. 62–69. ROI: jbc-01/19-60-12-62.

    Article  Google Scholar 

  20. Atkins, P.U., Physical Chemistry, Vol. 2, Publishing House of the World, 1980. Scorcheletti, V.V., Theoretical Electrochemistry, Leningrad: Khimiya, 1974, 4 ed.

  21. Balybin, D.V., Vigdorovich, V.I., Tsygankova, L.E., and Kuzina, O.Yu., Vestn. TSU, 2013, vol. 18, no. 5, pp. 2178–2184.

    Google Scholar 

  22. Balybin, D.V., Kalinushkina, E.Yu., and Popova, E.D., Chem. Sci., 2014, no. 1(5), pp. 45–47.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Kolesnikov.

Ethics declarations

No conflict of interest was declared by the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kolesnikov, A.V., Ageenko, E.I. Effect of Pyridine on the Electrochemical Parameters of the Hydroxonium Discharge on a Zinc Cathode. Russ J Gen Chem 93, 740–745 (2023). https://doi.org/10.1134/S1070363223030313

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070363223030313

Keywords:

Navigation