Log in

One-Step Synthesis of Carbon Quantum Dots with Antibacterial Activity Based on Andrographolide

  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

The increasing use of antibiotics to treat bacteria has led to the emergence of many resistant bacteria. Therefore, it is crucial to research novel antibiotics and understand how they are used to combat bacteria. In this study, a green, effective, and ecologically acceptable hydrothermal approach was used to efficiently convert andrographolide and citric acid into carbon dots with vivid blue fluorescence and an emission wavelength of 430 nm. TEM, AFM, FT-IR, and XPS were used to analyze the surface morphology, particle size distribution, and surface functional groups of carbon dots. It was discovered that carbon quantum dots had different functional groups linked to the surface and had a common particle dimension of 2.75 nm. Additionally, it was unexpectedly discovered that carbon quantum dots confirmed great antibacterial motion in opposition to both Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus), with a MIC of 1.14 mg/mL. Carbon quantum dots have a positive charge of 16 eV, which can connect to the bacterial cell wall and destroy the normal form of bacteria by generating 1O2, causing antibacterial effects, according to research on the antibacterial mechanism of carbon dots.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Willyard, C., Nature, 2017, vol. 543, p. 15. https://doi.org/10.1038/nature.2017.21550

    Article  CAS  PubMed  Google Scholar 

  2. Oliva, J., Terrier, O., Viruses., 2021, vol. 13, p. 9. https://doi.org/10.3390/v13091725

    Article  CAS  Google Scholar 

  3. Dnernberg, S.B., Lodise, T.P., Thaden, J.T., Munita, J.M., Cosgrove, S.E., Arias, C.A., Boucher, H.W., Corey, G.R., Lowy, F.D., Murray, B., Miller, L.G., and Holland, T.L., Clin. Infect. Dis., 2017, vol. 64, pp. 24–29. https://doi.org/10.1093/cid/ciw828

    Article  Google Scholar 

  4. Rolston, K.V.I., Clin. Infect. Dis., 2005, vol. 40, pp. 246–252. https://doi.org/10.1086/427331

    Article  Google Scholar 

  5. Kaido, H., Annu. Rev. Biochem., 2009, vol. 78, pp. 119–146.

    Article  Google Scholar 

  6. Zhang, S., Zhang, L., Huang, L., Zheng, G., Zhang, P., **, Y., Jiao, Z., and Sun, X., J. Lumin., 2019, vol. 206, pp. 608–612. https://doi.org/10.1016/j.jlumin.2018.10.086

    Article  CAS  Google Scholar 

  7. Mu, Y., Zhuang, Q., Huang, S., Hu, M., Wang, Y., and Ni, Y., Spectrochim. Acta A: Mol. Biomol. Spectrosc., 2020, vol. 239, p. 118531. https://doi.org/10.1016/j.saa.2020.118531

    Article  CAS  Google Scholar 

  8. Yue, H., Yuan, L., Zhang, W., Zhang, S., Wei, W., and Ma, G., J. Mater. Chem. B, 2018, vol. 6, pp. 393–400. https://doi.org/10.1039/C7TB01673E

    Article  CAS  PubMed  Google Scholar 

  9. Li, B., Zhao, S., Huang, L., Wang, Q., **ao, J., and Lan, M., Chem. Eng. J., 2021, vol. 408, p. 127245. https://doi.org/10.1016/j.cej.2020.127245

    Article  CAS  Google Scholar 

  10. Giroux, M.S., Zahra, Z., Salawu, O.A., Burgess, R.M., Ho, K.T., and Adeleye, A.S., Environ. Sci. Nano, 2022, vol. 9, pp. 867–910. https://doi.org/10.1039/D1EN00712B

    Article  CAS  PubMed  Google Scholar 

  11. Li, J., Li, X., Zeng, L., Fan, S., Zhang, M., Sun, W., Chen, X., Tadé, M.O., and Liu, S., Nanoscale, 2019, vol. 11, pp. 3877–3887. https://doi.org/10.1039/C8NR08611G

    Article  CAS  PubMed  Google Scholar 

  12. Kingston, C.T. and Simard, B., Anal. Lett., 2003, vol. 36, pp. 3119–3145. https://doi.org/10.1081/AL-120026564

    Article  CAS  Google Scholar 

  13. Dey, S., Govindaraj, A., Biswas, K., and Rao, C.N.R., Chem. Phys. Lett., 2014, vols. 595–596, pp. 203–208. https://doi.org/10.1016/j.cplett.2014.02.012

    Article  CAS  Google Scholar 

  14. Zhu, W., Zhou, Y., Tao, M., Yan, X., Liu, Y., and Zhou, X., Mikrochim Acta, 2020, vol. 187, p. 187. https://doi.org/10.1007/s00604-020-4163-5

    Article  CAS  PubMed  Google Scholar 

  15. Romero, M.P., Alves, F., Stringasci, M.D., Buzzá, H.H., Ciol, H., Inada, N.M., and Bagnato, V.S., Front. Microbiol., 2021, vol. 12, p. 662149. https://doi.org/10.3389/fmicb.2021.662149

    Article  PubMed  PubMed Central  Google Scholar 

  16. Armano, A., Buscarino, G., Messina, F., Sciortino, A., Cannas, M., Gelardi, F. M., Giannazzo, F., Schilirò, E., and Agnello, S., Nanomaterials, 2020, vol. 10, p. 528. https://doi.org/10.3390/nano10030528

    Article  CAS  PubMed Central  Google Scholar 

  17. Kumar, R., Kumar, V.B., and Gedanken, A., Ultrason Sonochem., 2020, vol. 64, p. 105009. https://doi.org/10.1016/j.ultsonch.2020.105009

    Article  CAS  PubMed  Google Scholar 

  18. Xu, J., Wang, C., Li, H., and Zhao, W., RSC Adv., 2020, vol. 10, pp. 2536–2544. https://doi.org/10.1039/C9RA08654D

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Mousavi, S.M., Hashemi, S.A., Kalashgrani, M.Y., Omidifar, N., Bahrani, S., Vijayakameswara Rao, N., Babapoor, A., Gholami, A., and Chiang, W.-H., Polymers, 2022, vol. 14, p. 617. https://doi.org/10.3390/polym14030617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Li, D., Xu, K., Zhao, W., Liu, M., Feng, R., Li, D., Bai, J., and Du, W., Front. Pharmacol., 2022, vol. 13, p. 815479. https://doi.org/10.3389/fphar.2022.815479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Luo, W.-K., Zhang, L.-L., Yang, Z.-Y., Guo, X.-H., Wu, Y., Zhang, W., Luo, J.-K., Tang, T., and Wang, Y., J. Nanobiotechnol., 2021, vol. 19, p. 320. https://doi.org/10.1186/s12951-021-01072-3

    Article  CAS  Google Scholar 

  22. Wu, L.-N., Yang, Y.-J., Huang, L.-X., Zhong, Y., Chen, Y., Gao, Y.-R., Lin, L.-Q., Lei, Y., and Liu, A.-L., Carbon, 2022, vol. 186, pp. 452–464. https://doi.org/10.1016/j.carbon.2021.10.020

    Article  CAS  Google Scholar 

  23. Liao, X., Chen, C., Wang, P., Zhou, R., Zhao, X., Fan, H., and Huang, Z,. Mater. Res. Bull., 2022, vol. 151, p. 111790. https://doi.org/10.1016/j.materresbull.2022.111790

    Article  CAS  Google Scholar 

  24. Olmos-Moya, P.M., Velazquez-Martinez, S., Pineda-Arellano, C., Rangel-Mendez, J.R., and Chazaro-Ruiz, L.F., Carbon, 2022, vol. 187, pp. 216–229. https://doi.org/10.1016/j.carbon.2021.11.003

    Article  CAS  Google Scholar 

  25. Burgos, R.A., Alarcón, P., Quiroga, J., Manosalva, C., and Hancke, J., Molecules, 2020, vol. 26, p. 5. https://doi.org/10.3390/molecules26010005

    Article  CAS  PubMed Central  Google Scholar 

  26. Das, S., Mishra, K.P., Ganju, L., and Singh, S.B., J. Neuroimmunol., 2017, vol. 313, pp. 161–175. https://doi.org/10.1016/j.jneuroim.2017.11.003

    Article  CAS  PubMed  Google Scholar 

  27. Varma, A., Padh, H., and Shrivastava, N., Evid. Based Complementary Altern. Med., 2010, vol. 2011, pp. 1–9. https://doi.org/10.1093/ecam/nep135

    Article  Google Scholar 

  28. Gao, F., Ma, S., Li, J., Dai, K., **ao, X., Zhao, D., and Gong, W., Carbon, 2017, vol. 112, pp. 131–141. https://doi.org/10.1016/j.carbon.2016.10.089

    Article  CAS  Google Scholar 

  29. Schneider, J., Reckmeier, C. J., **ong, Y., von Seckendorff, M., Susha, A.S., Kasák, P., and Rogach, A.L., J. Phys. Chem. C, 2017, vol. 121, pp. 2014–2022. https://doi.org/10.1021/acs.jpcc.6b12519

    Article  CAS  Google Scholar 

  30. Du, F., Shuang, S., Guo, Z., Gong, X., Dong, C., **an, M., and Yang, Z., Talanta, 2020, vol. 206, p. 120243. https://doi.org/10.1016/j.talanta.2019.120243

  31. Sun, Z., Zhou, W., Luo, J., Fan, J., Wu, Z., Zhu, H., Huang, J., and Zhang, X., J. Colloid. Interface Sci., 2022, vol. 607, p. 16. https://doi.org/10.1016/j.jcis.2021.08.188

  32. Hu, G., **e, Y., Xu, X., Lei, B,, Zhuang, J., Zhang, X., Zhang, H., Hu, C., Ma, W., and Liu, Y., Opt. Express., 2020, vol. 28, p. 19550. https://doi.org/10.1364/OE.391722

  33. Sun, B., Wu, F., Zhang, Q., Chu, X., Wang, Z., Huang, X., Li, J., Yao, C., Zhou, N., and Shen, J., J. Colloid. Interface Sci., 2021, vol. 584, pp. 505–519. https://doi.org/10.1016/j.jcis.2020.10.015

    Article  CAS  PubMed  Google Scholar 

  34. Ye, Z., Li, G., Lei, J., Liu, M., **, Y., and Li, B., ACS Appl. Bio Mater., 2020, vol. 3, pp. 7095–7102. https://doi.org/10.1021/acsabm.0c00923

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This research was funded by the Natural Science Foundation of Chongqing, NO. cstc2019jcyj-msxmX0083, and the Scientific Technological Research Program of Chongqing Municipal Education Commission, NO. KJQN201901501 and Open Fund of Chongqing Key Laboratory of Industrial Fermentation Microorganism (Chongqing University of Science and Technology), no. GYFJWSW-06.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Chen.

Ethics declarations

No conflict of interest was declared by the authors.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lai, L., Huang, X., Sun, W. et al. One-Step Synthesis of Carbon Quantum Dots with Antibacterial Activity Based on Andrographolide. Russ J Gen Chem 92, 2178–2185 (2022). https://doi.org/10.1134/S1070363222100309

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070363222100309

Keywords:

Navigation