Log in

The New Antibacterial Agents Based on the Fused Aromatic Heterocyclic Compounds: Design, Synthesis, and Antibacterial Activity

  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

In this study, the reaction of 1-alkyl-5-nitro-1H-benzoimidazoles and 1-alkyl-5-nitro-1H-indazoles with benzofuran and benzothiophen derivatives has led to formation of some new 3H-benzobenzofuro[2,3-b]imidazo[4,5-f]quinolines, 3H-benzo[4,5]thieno[2,3-b]imidazo[4,5-f]quinolines, 3H-benzofuro[2,3-b]pyrazolo[4,3-f]quinolones, and 3H-benzo[4,5]thieno[2,3-b]pyrazolo[4,3-f]quinolines in good yields. Structures of the new compounds have been confirmed by spectral and analytical data. Antibacterial activity of the new compounds has been tested against a panel of strains of gram negative and gram positive bacteria species. According to antimicrobial tests most of the title compounds are highly efficient against gram positive and gram negative bacteria and their MIC values are comparable with those of well known antibacterial agents ampicillin, penicillin G and sulfamethoxazole. Structure–activity relationship of the title compounds has been considered revealing imidazole core as a pharmacophore in antimicrobial tests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Canada)

Instant access to the full article PDF.

Scheme 1.
Scheme 2.

Similar content being viewed by others

REFERENCES

  1. Zhang, L., Peng, X.M., Damu, G.L., Geng, R.X., and Zhou, C.H., Med. Res. Rev., 2014, vol. 34, p. 340. https://doi.org/10.1002/med.21290

    Article  CAS  PubMed  Google Scholar 

  2. Dwivedi, J., Sharma, S., Jain, S., and Singh, A., Mini Rev. Med. Chem., 2018, vol. 18, no. 11, p. 918. https://doi.org/10.2174/1389557517666170927160919

    Article  CAS  PubMed  Google Scholar 

  3. Vieira, P., Miranda, M.Q., Marques, I., Carvalho, S., Chen, L.J., Howe, E.N., Zhen, C., and Leung, C.Y., Chemistry–A Eur. J., 2020, vol. 26, p. 888. https://doi.org/10.1002/chem.201904255

    Article  CAS  Google Scholar 

  4. Cseke, L.J., Kirakosyan, A., Kaufman, P.B., Warber, S., Duke, J.A., and Brielmann, H.L., CRC Press., 2016. https://doi.org/10.1201/9781420004472

  5. Afzal, O., Kumar, S., Haider, M.R., Ali, M.R., Kumar, R., Jaggi, M., and Bawa, S., Eur. J. Med. Chem., 2015, vol. 97, p. 871. https://doi.org/10.1016/j.ejmech.2014.07.044

    Article  CAS  PubMed  Google Scholar 

  6. Weyesa, A. and Mulugeta, E., RSC Adv., 2020, vol. 10, p. 20784. https://doi.org/10.1039/D0RA03763J

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bisacchi, G.S., J. Med. Chem., 2015, vol. 58, p. 4874. https://doi.org/10.1021/jm501881c

    Article  CAS  PubMed  Google Scholar 

  8. Lu, D., Zhou, Y., Li, Q., Luo, J., Jiang, Q., He, B., and Tang, Q., Anticancer Agents Med. Chem., 2020, vol. 20, p. 1475. https://doi.org/10.2174/1871520620666200424130204

    Article  CAS  PubMed  Google Scholar 

  9. Karimi, N., Pordel, M., Davoodnia, A., Sadeghian, H., and Mousavian, M., Pharm. Chem. J., 2019, vol. 53, p. 52. https://doi.org/10.1007/s11094-019-01955-8

    Article  CAS  Google Scholar 

  10. Sobhani, S., Pordel, M., and Beyramabadi, S.A., J. Mol. Struc., 2019, vol. 1175, p. 677. https://doi.org/10.1016/j.molstruc.2018.08.034

    Article  CAS  Google Scholar 

  11. Ramezani, S., Pordel, M., and Davoodnia, A., Inorg. Chim. Acta, 2019, vol. 484, p. 450. https://doi.org/10.1016/j.ica.2018.09.050

    Article  CAS  Google Scholar 

  12. Poormirzaei, N., Pordel, M., Yaghoobi, E., Shojaee, S., Aminiyanfar, M., and Gonabadi, A., J. Chem. Rese., 2020, vol. 44, p. 167. https://doi.org/10.1177/1747519819893060

    Article  CAS  Google Scholar 

  13. Rad, S.Z., Pordel, M., and Davvodnia, A., Iran. J. Chem. Chem. Eng. Research, 2019, vol. 38, p. 111. https://doi.org/10.30492/IJCCE.2019.32274

  14. Preston, P.N., The Chemistry of Heterocyclic Compounds, Benzimidazoles and Cogeneric Tricyclic Compounds, 1980, vol. 40, p. 87. https://doi.org/10.1002/9780470187159.ch1

    Article  Google Scholar 

  15. Coles, H.W. and Dodds, M.L., J. Amer. Chem. Soc., 1938, vol. 60, p 853. https://doi.org/10.1021/ja01271a023

  16. Zonozi, F., Pordel, M., Beyramabadi, S.A., and Morsali, A., Progr. React. Kinet. Mechan., 2016, vol. 41, p. 365. https://doi.org/10.3184/146867816X14720534560565

    Article  CAS  Google Scholar 

  17. Joux, F., and Lebaron, P., Microbes Infect., 2000, vol. 2, p. 1523. https://doi.org/10.1016/S1286-4579(00)01307-1

    Article  CAS  PubMed  Google Scholar 

  18. Bouissane, S.E., Kazzouli, J.M., Leger, C., Jarry, E.M., Rakib, Khouili, M., and Guillaumet, G., Tetrahedron, 2005, vol. 561, p. 8218. https://doi.org/10.1016/j.tet.2005.06.038

    Article  CAS  Google Scholar 

  19. Andrews, J.M., J. Antimicrob. Chemother., 2001, vol. 48, p. 5. https://doi.org/10.1093/jac/48.suppl_1.5

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

We would like to express our sincere gratitude to Research Office, Mashhad Branch, Islamic Azad University, Mashhad-Iran, for financial support of this work. We must also acknowledge Maryam Jajarmi (Khorasan Razavi Rural Water and Wastewater Co.) for her assistance in antibacterial studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi Pordel.

Ethics declarations

No conflict of interest was declared by the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Faramarzi, M., Pordel, M. & Morsali, A. The New Antibacterial Agents Based on the Fused Aromatic Heterocyclic Compounds: Design, Synthesis, and Antibacterial Activity. Russ J Gen Chem 92, 732–738 (2022). https://doi.org/10.1134/S1070363222040156

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070363222040156

Keywords:

Navigation