Log in

Catalytic N-Alkylation of Anilines

  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

The review summarizes data on modern approaches to N-alkylation of anilines using metal complex and heterogeneous catalysts based on palladium, platinum, rhodium, nickel, iron, copper, gold supported on various materials, as well as zeolites, metal oxides (titanium, iron, copper, and aluminum). The N-alkylation reactions of anilines with alkyl halides, alcohols, dimethyl carbonate, aldehydes, as well as with CO2/H2 and alkylation with alternative reagents are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme

Similar content being viewed by others

REFERENCES

  1. Gessner, T. and Mayer, U., Triarylmethane and Diarylmethane Dyes, in Ullmann’s Encyclopedia of Industrial Chemistry, Weinheim: Wiley-VCH, 2000, p. 425. https://doi.org/10.1002/14356007.a27_179

  2. van der Vlugt, J.I., Chem. Soc. Rev., 2010, vol. 39, no. 6, p. 2302. https://doi.org/10.1039/b925794m

    Article  CAS  PubMed  Google Scholar 

  3. Guillaume, D., J. Nat. Prod., 2005, vol. 68, no. 11, p. 1715. https://doi.org/10.1021/np0582630

    Article  CAS  Google Scholar 

  4. Bähn, S., Imm, S., Neubert, L., Zhang, M., Neumann, H., and Beller, M., Chem. Cat. Chem., 2011, vol. 3, p. 1853. https://doi.org/10.1002/cctc.201100255

    Article  CAS  Google Scholar 

  5. Reed-Berendt, B.G., Polidano, K., and Morrill, L.C., Org. Biomol. Chem., 2019, vol. 17. N 7, p. 1595. https://doi.org/10.1039/c8ob01895b

    Article  CAS  PubMed  Google Scholar 

  6. Salvatore, R.N., Yoon, C.H., and Jung, K.W., Tetrahedron, 2001, vol. 57, p. 7785. https://doi.org/10.1016/S0040-4020(01)00722-0

    Article  CAS  Google Scholar 

  7. Natte, K., Neumann, H., Beller, M., and Jagadeesh, R.V., Angew. Chem. Int. Ed., 2017, vol. 56, no. 23, p. 6384. https://doi.org/10.1002/anie.201612520

    Article  CAS  Google Scholar 

  8. Tundo, P. and Selva, M., Acc. Chem. Res., 2002, vol. 35, no. 9, p. 706. https://doi.org/10.1021/ar010076f

    Article  CAS  PubMed  Google Scholar 

  9. Selva, M. and Perosa, A., Green Chem., 2008, vol. 10, no. 4, p. 457. https://doi.org/10.1039/b713985c

    Article  CAS  Google Scholar 

  10. Tlili, A., Frogneux, X., Blondiaux, E., and Cantat, T., Angew. Chem. Int. Ed., 2014, vol. 53, no. 10, p. 2543. https://doi.org/10.1002/anie.201310337

    Article  CAS  Google Scholar 

  11. Klankermayer, J., Wesselbaum, S., Beydoun, K., and Leitner, W., Angew. Chem. Int. Ed., 2016, vol. 55, no. 26, p. 7296. https://doi.org/10.1002/anie.201507458

    Article  CAS  Google Scholar 

  12. Naota, T. and Takaya, H., Chem. Rev., 1998, vol. 98, no. 7, p. 2599. https://doi.org/10.1021/cr9403695

    Article  CAS  PubMed  Google Scholar 

  13. Suzuki, T., Chem. Rev., 2011, vol. 111, no. 3, p. 1825. https://doi.org/10.1021/cr100378r

    Article  CAS  PubMed  Google Scholar 

  14. Fujita, K. and Yamaguchi, R., Synlett, 2005, no. 4, p. 560. https://doi.org/10.1055/s-2005-862381

    Article  CAS  Google Scholar 

  15. Hamid, M.H.S.A., Slatford, P.A., and Williams, J.M.J., Adv. Synth. Catal., 2007, vol. 349, no. 10, p. 1555. https://doi.org/10.1002/adsc.200600638

    Article  CAS  Google Scholar 

  16. Haynes, A., Angew. Chem. Int. Ed., 2009, vol. 48, no. 33, p. 5993. https://doi.org/10.1002/anie.200903039

    Article  CAS  Google Scholar 

  17. Fujita, K. and Yamaguchi, R., Iridium Complexes in Organic Synthesis, Weinheim: Wiley-VCH, 2008, p. 396.

  18. Nixon, T.D., Whittlesey, M.K., and Williams, J.M.J., Dalton Trans., 2009, no. 5, p. 753. https://doi.org/10.1039/B813383B

    Article  Google Scholar 

  19. Dobereiner, G.E. and Crabtree, R.H., Chem. Rev., 2010, vol. 110, no. 2, p. 681. https://doi.org/10.1021/cr900202j

    Article  CAS  PubMed  Google Scholar 

  20. Guillena, G., Ramón, D.J., and Yus, M., Chem. Rev., 2010, vol. 110, no. 3, p. 1611. https://doi.org/10.1021/cr9002159

    Article  CAS  PubMed  Google Scholar 

  21. Yang, Q., Wang, Q., and Yu, Z., Chem. Soc. Rev., 2015, vol. 44, no. 8, p. 2305. https://doi.org/10.1039/C4CS00496E

    Article  CAS  PubMed  Google Scholar 

  22. Li, Y., Cui, X., Dong, K., Junge, K., and Beller, M., ACS Catal., 2017, vol. 7, no. 2, p. 1077. https://doi.org/10.1021/acscatal.6b02715

    Article  CAS  Google Scholar 

  23. Chen, Y., Chem. Eur. J., 2019, vol. 25, no. 14, p. 3405. https://doi.org/10.1002/chem.201803642

    Article  CAS  PubMed  Google Scholar 

  24. Spargo, P., Org. Proc. Res. Dev., 2003, vol. 7, no. 6, p. 1084. https://doi.org/10.1021/op0341364

    Article  CAS  Google Scholar 

  25. Kleeman, A., Engels, J., Kutscher, B., and Reichert, D., Org. Proc. Res. Dev., 2002, vol. 6, no. 5, p. 739. https://doi.org/10.1021/op0200423

    Article  CAS  Google Scholar 

  26. March, J., Appl. Organomet. Chem., 1993, vol. 7, p. 293. https://doi.org/10.1002/aoc.590070411

    Article  Google Scholar 

  27. Onaka, M., Ishikawa, K., and Izumi, Y., Chem. Lett., 1982, vol. 11, no. 11, p. 1783. https://doi.org/10.1246/cl.1982.1783

    Article  Google Scholar 

  28. Onaka, M., Umezono, A., Kawai, M., and Izumi, Y., J. Chem. Soc. Chem. Commun., 1985, no. 17, p. 1202. https://doi.org/10.1039/c39850001202

    Article  Google Scholar 

  29. Onaka, M., Ishikawa, K., and Izumi, Y., J. Incl. Phenom., 1984, vol. 2, no. 1–2, p. 359. https://doi.org/10.1007/BF00663276

    Article  CAS  Google Scholar 

  30. Onaka, M. and Izumi, Y., J. Synth. Org. Chem. Japan, 1989, vol. 47, no. 3, p. 233. https://doi.org/10.5059/yukigoseikyokaishi.47.233

    Article  CAS  Google Scholar 

  31. Hayat, S., Atta-ur-Rahman, Choudhary, M.I., Khan, K.M., Schumann, W., and Bayer, E., Tetrahedron, 2001, vol. 57, no. 50, p. 9951. https://doi.org/10.1016/S0040-4020(01)00989-9

    Article  CAS  Google Scholar 

  32. Gawande, M.B., Deshpande, S.S., Satam, J.R., and Jayaram, R.V., Catal. Commun., 2007, vol. 8, no. 3, p. 576. https://doi.org/10.1016/j.catcom.2006.08.011

    Article  CAS  Google Scholar 

  33. Shetty, M.R., Kshirsagar, S.W., Lanka, S.V., and Samant, S.D., Green Chem. Lett. Rev., 2012, vol. 5, no. 3, p. 291. https://doi.org/10.1080/17518253.2011.624127

    Article  CAS  Google Scholar 

  34. Chen, and Yang, L.-M., J. Org. Chem., 2007, vol. 72, no. 16, p. 6324. https://doi.org/10.1021/jo0709448

    Article  CAS  PubMed  Google Scholar 

  35. Kim, M. and Chang, S., Org. Lett., 2010, vol. 12, no. 7, p. 1640. https://doi.org/10.1021/ol100437j

    Article  CAS  PubMed  Google Scholar 

  36. Chakraborti, G., Paladhi, S., Mandal, T., and Dash, J., J. Org. Chem., 2018, vol. 83, no. 14, p. 7347. https://doi.org/10.1021/acs.joc.7b03020

    Article  CAS  PubMed  Google Scholar 

  37. Narayanan, S. and Deshpande, K., Appl. Catal. (A), 2000, vol. 199, no. 1, p. 1. https://doi.org/10.1016/S0926-860X(99)00540-2

    Article  CAS  Google Scholar 

  38. Ivanova, I.I., Pomakhina, E.B., Rebrov, A.I., Wang, W., Hunger, M., and Weitkamp, J., Kinet. Catal., 2003, vol. 44, no. 5, p. 701. https://doi.org/10.1023/A:1026158525990

    Article  CAS  Google Scholar 

  39. Stytsenko, V.D., Do Huu, T., and Vinokurov, V.A., Kinet. Catal., 2005, vol. 46, no. 3, p. 376. https://doi.org/10.1007/s10975-005-0088-6

    Article  CAS  Google Scholar 

  40. Luque, R., Campelo, J.M., Luna, D., Marinas, J.M., and Romero, A.A., J. Mol. Catal. (A), 2007, vol. 269, nos. 1–2, p. 190. https://doi.org/10.1016/j.molcata.2007.01.023

    Article  CAS  Google Scholar 

  41. Su, J., Li, X., Chen, Y., Cui, Y.,. Xu, J, Qian, C., and Chen, X., RSC Adv., 2016, vol. 6, no. 60, p. 55643. https://doi.org/10.1039/c6ra07998a

    Article  CAS  Google Scholar 

  42. Garces, L.J., Makwana, V.D., Hincapie, B., Sacco, A., and Suib, S.L., J. Catal., 2003, vol. 217, no. 1, p. 107. https://doi.org/10.1016/S0021-9517(03)00048-4

    Article  CAS  Google Scholar 

  43. Valot, F., Fache, F., Jacquot, R., Spagnol, M., and Lemaire, M., Tetrahedron Lett., 1999, vol. 40, no. 19, p. 3689. https://doi.org/10.1016/S0040-4039(99)00588-2

    Article  CAS  Google Scholar 

  44. Minakata, S., Morino, Y., Oderaotoshi, Y., and Komatsu, M., Org. Lett., 2006, vol. 8, no. 15, p. 3335. https://doi.org/10.1021/ol061182q

    Article  CAS  PubMed  Google Scholar 

  45. Maclean, D., Hale, R., and Chen, M., Org. Lett., 2001, vol. 3, no. 19, p. 2977. https://doi.org/10.1021/ol0163124

    Article  CAS  PubMed  Google Scholar 

  46. Industrial and Laboratory Alkylations, Albright, L.F. and Goldsby, A.R., Eds., Washington: American Chemical Society, 1977.

  47. Jamil, M.A.R., Touchy, A.S., Rashed, M.N., Ting, K.W., Siddiki, S.M.A.H., Toyao, T., Maeno, Z., and Shimizu, K., J. Catal., 2019, vol. 371, p. 47. https://doi.org/10.1016/j.jcat.2019.01.027

    Article  CAS  Google Scholar 

  48. Liu, X., Hermange, P., Ruiz, J., and Astruc, D., ChemCatChem, 2016, vol. 8, no. 6, p. 1043. https://doi.org/10.1002/cctc.201501346

    Article  CAS  Google Scholar 

  49. Zhang, L., Zhang, Y., Deng, Y., and Shi, F., RSC Adv., 2015, vol. 5, no. 19, p. 14514. https://doi.org/10.1039/C4RA13848A

    Article  CAS  Google Scholar 

  50. Shiraishi, Y., Fujiwara, K., Sugano, Y., Ichikawa, S., and Hirai, T., ACS Catal., 2013, vol. 3, no. 3, p. 312. https://doi.org/10.1021/cs300756f

    Article  CAS  Google Scholar 

  51. Furukawa, S., Suzuki, R., and Komatsu, T., ACS Catal., 2016, vol. 6, no. 9, p. 5946. https://doi.org/10.1021/acscatal.6b01677

    Article  CAS  Google Scholar 

  52. Kwon, M.S., Kim, S., Park, S., Bosco, W., Chidrala, R.K., and Park, J., J. Org. Chem., 2009, vol. 74, no. 7, p. 2877. https://doi.org/10.1021/jo8026609

    Article  CAS  PubMed  Google Scholar 

  53. Zhang, Y., Qi, X., Cui, X., Shi, F., and Deng, Y., Tetrahedron Lett., 2011, vol. 52, no. 12, p. 1334. https://doi.org/10.1016/j.tetlet.2011.01.059

    Article  CAS  Google Scholar 

  54. Shimizu, K.I., Imaiida, N., Kon, K., Hakim Siddiki, S.M.A., and Satsuma, A., ACS Catal., 2013, vol. 3, no. 5, p. 998. https://doi.org/10.1021/cs4001267

    Article  CAS  Google Scholar 

  55. Cui, X., Dai, X., Deng, Y., and Shi, F., Chem. Eur. J., 2013, vol. 19, no. 11, p. 3665. https://doi.org/10.1002/chem.201203417

    Article  CAS  PubMed  Google Scholar 

  56. Popov, Y.V., Mokhov, V.M., and Tankabekyan, N.A., Russ. J. Gen. Chem., 2014, vol. 84, no. 5, p. 826. https://doi.org/10.1134/S1070363214050065

    Article  CAS  Google Scholar 

  57. Martínez, R., Ramón, D.J., and Yus, M., Org. Biomol. Chem., 2009, vol. 7, no. 10, p. 2176. https://doi.org/10.1039/b901929d

    Article  CAS  PubMed  Google Scholar 

  58. Rafiee, E., Joshaghani, M., and Abadi, P.G.S., Res. Chem. Intermed, 2018, vol. 44, no. 4, p. 2503. https://doi.org/10.1007/s11164-017-3243-6

    Article  CAS  Google Scholar 

  59. Ghanimati, M., Abdoli Senejani, M., Isfahani, T.M., and Bodaghifard, M.A., Appl. Organomet. Chem., 2018, vol. 32, no. 12, p. e4591. https://doi.org/10.1002/aoc.4591

  60. Liu, H., Chuah, G.K., and Jaenicke, S., J. Catal., 2012, vol. 292, p. 130. https://doi.org/10.1016/j.jcat.2012.05.007

    Article  CAS  Google Scholar 

  61. Geukens, I., Vermoortele, F., Meledina, M., Turner, S., Van Tendeloo, G., and De Vos, D.E., Appl. Catal. (A), 2014, vol. 469, no. 2014, p. 373. https://doi.org/10.1016/j.apcata.2013.09.044

    Article  CAS  Google Scholar 

  62. Cui, X., Zhang, Y., Shi, F., and Deng, Y., Chem. Eur. J., 2011, vol. 17, no. 3, p. 1021. https://doi.org/10.1002/chem.201001915

    Article  CAS  PubMed  Google Scholar 

  63. Shimizu, K., Nishimura, M., and Satsuma, A., ChemCatChem, 2009, vol. 1, no. 4, p. 497. https://doi.org/10.1002/cctc.200900209

    Article  CAS  Google Scholar 

  64. Sarno, M., Iuliano, M., and Ponticorvo, E., Mater. Today Proc., 2020, vol. 20, p. 16. https://doi.org/10.1016/j.matpr.2019.08.151

    Article  CAS  Google Scholar 

  65. Ishida, T., Kawakita, N., Akita, T., and Haruta, M., Gold Bull., 2009, vol. 42, no. 4, p. 267.

    Article  CAS  Google Scholar 

  66. Stíbal, D., Sá, J., and van Bokhoven, J.A., Catal. Sci. Technol., 2013, vol. 3, no. 1, p. 94. https://doi.org/10.1039/C2CY20511D

    Article  Google Scholar 

  67. He, L., Lou, X.B., Ni, J., Liu, Y.M., Cao, Y., He, H.Y., and Fan, K.N., Chem. Eur. J., 2010, vol. 16, no. 47, p. 13965. https://doi.org/10.1002/chem.201001848

    Article  CAS  PubMed  Google Scholar 

  68. Zhu, H., Dong, X., Shi, L., and Sun, Q., J. Nat. Gas Chem., 2010, vol. 19, no. 1, p. 67. https://doi.org/10.1016/S1003-9953(09)60036-0

    Article  CAS  Google Scholar 

  69. Belov, V.V., Markov, V.I., Sova, S.B., Gerasimenko, V.A., Tomskikh, T.A., and Yanova, K., Voprosy khim. i khim. tekhnol., 2008, no. 3, p. 28.

    Google Scholar 

  70. Zhang, L., Zhang, Y., Deng, Y., and Shi, F., Catal. Sci. Technol., 2015, vol. 5, no. 6, p. 3226. https://doi.org/10.1039/C5CY00316D

    Article  CAS  Google Scholar 

  71. Vijayaraj, M. and Gopinath, C.S., Appl. Catal. (A), 2007, vol. 320, p. 64. https://doi.org/10.1016/j.apcata.2006.12.016

    Article  CAS  Google Scholar 

  72. Likhar, P.R., Arundhathi, R., Kantam, M.L., and Prathima, P.S., Eur. J. Org. Chem., 2009, vol. 2009, no. 31, p. 5383. https://doi.org/10.1002/ejoc.200900628

    Article  CAS  Google Scholar 

  73. Bukhtiyarova, M.V., Nuzhdin, A.L., Kardash, T.Y., Bukhtiyarov, A.V., Gerasimov, E.Y., and Romanenko, A.V., Kinet. Catal., 2019, vol. 60, no. 3, p. 343. https://doi.org/10.1134/S0023158419030030

    Article  CAS  Google Scholar 

  74. Jiang, L., Guo, F., Wang, Y., Jiang, J., Duan, Y., and Hou, Z., Asian J. Org. Chem., 2019, vol. 8, no. 11, p. 2046. https://doi.org/10.1002/ajoc.201900509

    Article  CAS  Google Scholar 

  75. Goyal, V., Gahtori, J., Narani, A., Gupta, P., Bordoloi, A., and Natte, K., J. Org. Chem., 2019, vol. 84, no. 23, p. 15389. https://doi.org/10.1021/acs.joc.9b02141

    Article  CAS  PubMed  Google Scholar 

  76. Rawlings, A.J., Diorazio, L.J., and Wills, M., Org. Lett., 2015, vol. 17, p. 1086. https://doi.org/10.1021/ol503587n

    Article  CAS  PubMed  Google Scholar 

  77. Pan, H.J., Ng, T.W., and Zhao, Y., Chem. Commun., 2015, vol. 51, p. 11907. https://doi.org/10.1039/c5cc03399c

    Article  CAS  Google Scholar 

  78. Brown, T.J., Cumbes, M., Diorazio, L.J., Clarkson, G.J., and Wills, M., J. Org. Chem., 2017, vol. 82. P.10489. https://doi.org/10.1021/acs.joc.7b01990

  79. Plank, T.N., Drake, J.L., Kim, D.K., and Funk, T.W., Adv. Synth. Catal., 2012, vol. 354, no. 4, p. 597. https://doi.org/10.1002/adsc.201100896

    Article  CAS  Google Scholar 

  80. Yan, T., Feringa, B.L., and Barta, K., ACS Catal., 2016, vol. 6, no. 1, p. 381. https://doi.org/10.1021/acscatal.5b02160

    Article  CAS  Google Scholar 

  81. Yan, T., Feringa, B.L., and Barta, K., Nat. Commun., 2014, vol. 5, no. 1, p. 5602. https://doi.org/10.1038/ncomms6602

    Article  CAS  PubMed  Google Scholar 

  82. Lator, A., Gaillard, S., Poater, A., and Renaud, J.L., Org. Lett., 2018, vol. 20, no. 19, p. 5985. https://doi.org/10.1021/acs.orglett.8b02080

    Article  CAS  PubMed  Google Scholar 

  83. Polidano, K., Allen, B.D.W., Williams, J.M.J., and Morrill, L.C., ACS Catal., 2018, vol. 8, no. 7, p. 6440. https://doi.org/10.1021/acscatal.8b02158

    Article  CAS  Google Scholar 

  84. Mastalir, M., Glatz, M., Gorgas, N., Stöger, B., Pittenauer, E., Allmaier, G., Veiros, L.F., and Kirchner, K., Chem. Eur. J., 2016, vol. 22, no. 35, p. 12316. https://doi.org/10.1002/chem.201603148

    Article  CAS  PubMed  Google Scholar 

  85. Zhao, Y., Foo, S.W., and Saito, S., Angew. Chem. Int. Ed., 2011, vol. 50, no. 13, p. 3006. https://doi.org/10.1002/anie.201006660

    Article  CAS  Google Scholar 

  86. Khusnutdinov, R.I., Bayguzina, A.R., and Aminov, R.I., Russ. J. Org. Chem., 2013, vol. 49, no. 10, p. 1447. https://doi.org/10.1134/S1070428013100072

    Article  CAS  Google Scholar 

  87. Khusnutdinov, R.I., Bayguzina, A.R., Asylbaeva, R.S., Aminov, R.I., and Dzhemilev, U.M., Arkivoc, 2014, vol. 2014, no. 5. https://doi.org/10.3998/ark.5550190.p008.743

  88. RU Patent no. 2547046, 2015; C. A., 2015, vol. 162, p. 527401.

  89. .Zhang, G., Yin, Z., and Zheng, S., Org. Lett., 2016, vol. 18, no. 2, p. 300. https://doi.org/10.1021/acs.orglett.5b03461

    Article  CAS  PubMed  Google Scholar 

  90. Rösler, S., Ertl, M., Irrgang, T., and Kempe, R., Angew. Chem. Int. Ed., 2015, vol. 54, no. 50, p. 15046. https://doi.org/10.1002/anie.201507955

    Article  CAS  Google Scholar 

  91. Liu, Z., Yang, Z., Yu, X., Zhang, H., Yu, B., Zhao, Y., and Liu, Z., Adv. Synth. Catal., 2017, vol. 359, no. 24, p. 4278. https://doi.org/10.1002/adsc.201701044

    Article  CAS  Google Scholar 

  92. Emayavaramban, B., Chakraborty, P., Manoury, E., Poli, R., and Sundararaju, B., Org. Chem. Front., 2019, vol. 6, no. 6, p. 852. https://doi.org/10.1039/c8qo01389f

    Article  CAS  Google Scholar 

  93. Mastalir, M., Tomsu, G., Pittenauer, E., Allmaier, G., and Kirchner, K., Org. Lett., 2016, vol. 18, no. 14, p. 3462. https://doi.org/10.1021/acs.orglett.6b01647

    Article  CAS  PubMed  Google Scholar 

  94. Elangovan, S., Neumann, J., Sortais, J.B., Junge, K., Darcel, C., and Beller, M., Nat. Commun., 2016, vol. 7, p. 1. https://doi.org/10.1038/ncomms12641

    Article  CAS  Google Scholar 

  95. Bruneau-Voisine, A., Wang, D., Dorcet, V., Roisnel, T., Darcel, C., and Sortais, J.-B., J. Catal., 2017, vol. 347, p. 57. https://doi.org/10.1016/j.jcat.2017.01.004

    Article  CAS  Google Scholar 

  96. Neumann, J., Elangovan, S., Spannenberg, A., Junge, K., and Beller, M., Chem. Eur. J., 2017, vol. 23, no. 23, p. 5410. https://doi.org/10.1002/chem.201605218

    Article  CAS  PubMed  Google Scholar 

  97. Homberg, L., Roller, A., and Hultzsch, K.C., Org. Lett., 2019, vol. 21, no. 9, p. 3142. https://doi.org/10.1021/acs.orglett.9b00832

    Article  CAS  PubMed  Google Scholar 

  98. Fertig, R., Irrgang, T., Freitag, F., Zander, J., and Kempe, R., ACS Catal., 2018, vol. 8, no. 9, p. 8525. https://doi.org/10.1021/acscatal.8b02530

    Article  CAS  Google Scholar 

  99. Huang, M., Li, Y., Li, Y., Liu, J., Shu, S., Liu, Y., and Ke, Z., Chem. Commun., 2019, vol. 55, no. 44, p. 6213. https://doi.org/10.1039/c9cc02989c

    Article  CAS  Google Scholar 

  100. Yu, X., Liu, C., Jiang, L., and Xu, Q., Org. Lett., 2011, vol. 13, no. 23, p. 6184. https://doi.org/10.1021/ol202582c

    Article  CAS  PubMed  Google Scholar 

  101. Enyong, A.B. and Moasser, B., J. Org. Chem., 2014, vol. 79, no. 16, p. 7553. https://doi.org/10.1021/jo501273t

    Article  CAS  PubMed  Google Scholar 

  102. Hamid, M.H.S.A. and Williams, J.M.J., Chem. Commun., 2007, no. 7, p. 725. https://doi.org/10.1039/b616859k

    Article  CAS  Google Scholar 

  103. Marichev, K.O. and Takacs, J.M., ACS Catal., 2016, vol. 6, no. 4, p. 2205. https://doi.org/10.1021/acscatal.6b00175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Huh, K.-T., Tsuji, Y., Kobayashi, M., Okuda, F., and Watanabe, Y., Chem. Lett., 1988, vol. 17, no. 3, p. 449. https://doi.org/10.1246/cl.1988.449

    Article  Google Scholar 

  105. Del Zotto, A., Baratta, W., Sandri, M., Verardo, G., and Rigo, P., Eur. J. Inorg. Chem., 2004, vol. 2004, no. 3, p. 524. https://doi.org/10.1002/ejic.200300518

    Article  CAS  Google Scholar 

  106. Kaloğlu, M., Gürbüz, N., Sémeril, D., and Özdemir, İ., Eur. J. Inorg. Chem., 2018, vol. 2018, no. 10, p. 1236. https://doi.org/10.1002/ejic.201701479

    Article  CAS  Google Scholar 

  107. Dang, T.T., Ramalingam, B., and Seayad, A.M., ACS Catal., 2015, vol. 5, no. 7, p. 4082. https://doi.org/10.1021/acscatal.5b00606

    Article  CAS  Google Scholar 

  108. Roy, B.C., Debnath, S., Chakrabarti, K., Paul, B., Maji, M., and Kundu, S., Org. Chem. Front., 2018, vol. 5, no. 6, p. 1008. https://doi.org/10.1039/c7qo01061c

    Article  CAS  Google Scholar 

  109. Naskar, S. and Bhattacharjee, M., Tetrahedron Lett., 2007, vol. 48, no. 19, p. 3367. https://doi.org/10.1016/j.tetlet.2007.03.075

    Article  CAS  Google Scholar 

  110. Ogata, O., Nara, H., Fujiwhara, M., Matsumura, K., and Kayaki, Y., Org. Lett., 2018, vol. 20, no. 13, p. 3866. https://doi.org/10.1021/acs.orglett.8b01449

    Article  CAS  PubMed  Google Scholar 

  111. Choi, G. and Hong, S.H., Angew. Chem. Int. Ed., 2018, vol. 57, no. 21, p. 6166. https://doi.org/10.1002/anie.201801524

    Article  CAS  Google Scholar 

  112. Paul, B., Shee, S., Chakrabarti, K., and Kundu, S., ChemSusChem, 2017, vol. 10, no. 11, p. 2370. https://doi.org/10.1002/cssc.201700503

    Article  CAS  PubMed  Google Scholar 

  113. Das, K., Nandi, P.G., Islam, K., Srivastava, H.K., and Kumar, A., Eur. J. Org. Chem., 2019, vol. 2019, no. 40, p. 6855. https://doi.org/10.1002/ejoc.201901310

    Article  CAS  Google Scholar 

  114. Jumde, V.R., Gonsalvi, L., Guerriero, A., Peruzzini, M., and Taddei, M., Eur. J. Org. Chem., 2015, vol. 2015, no. 8, p. 1829. https://doi.org/10.1002/ejoc.201403636

    Article  CAS  Google Scholar 

  115. Watanabe, Y., Tsuji, Y., and Ohsugi, Y., Tetrahedron Lett., 1981, vol. 22, no. 28, p. 2667. https://doi.org/10.1016/S0040-4039(01)92965-X

    Article  CAS  Google Scholar 

  116. Maji, M., Chakrabarti, K., Paul, B., Roy, B.C., and Kundu, S., Adv. Synth. Catal., 2018, vol. 360, no. 4, p. 722. https://doi.org/10.1002/adsc.201701117

    Article  CAS  Google Scholar 

  117. Blank, B., Michlik, S., and Kempe, R., Chem. Eur. J., 2009, vol. 15, no. 15, p. 3790. https://doi.org/10.1002/chem.200802318

    Article  CAS  PubMed  Google Scholar 

  118. Ruch, S., Irrgang, T., and Kempe, R., Chem. Eur. J., 2014, vol. 20, no. 41, p. 13279. https://doi.org/10.1002/chem.201402952

    Article  CAS  PubMed  Google Scholar 

  119. Kawahara, R., Fujita, K., and Yamaguchi, R., Adv. Synth. Catal., 2011, vol. 353, no. 7, p. 1161. https://doi.org/10.1002/adsc.201000962

    Article  CAS  Google Scholar 

  120. Wetzel, A., Wöckel, S., Schelwies, M., Brinks, M.K., Rominger, F., Hofmann, P., and Limbach, M., Org. Lett., 2013, vol. 15, no. 2, p. 266. https://doi.org/10.1021/ol303075h

    Article  CAS  PubMed  Google Scholar 

  121. Campos, J., Sharninghausen, L.S., Manas, M.G., and Crabtree, R.H., Inorg. Chem., 2015, vol. 54, no. 11, p. 5079. https://doi.org/10.1021/ic502521c

    Article  CAS  PubMed  Google Scholar 

  122. Li, F., **e, J., Shan, H., Sun, C., and Chen, L., RSC Adv., 2012, vol. 2, no. 23, p. 8645. https://doi.org/10.1039/c2ra21487c

    Article  CAS  Google Scholar 

  123. Toyooka, G., Tuji, A., and Fujita, K., Synthesis, 2018, vol. 50, no. 23, p. 4617. https://doi.org/10.1055/s-0037-1610252

    Article  CAS  Google Scholar 

  124. Jiménez, M.V., Fernández-Tornos, J., González-Lainez, M., Sánchez-Page, B., Modrego, F.J., Oro, L.A., and Pérez-Torrente, J.J., Catal. Sci. Technol., 2018, vol. 8, no. 9, p. 2381. https://doi.org/10.1039/c7cy02488f

    Article  CAS  Google Scholar 

  125. Deng, D., Hu, B., Yang, M., and Chen, D., Organometallics, 2018, vol. 37, no. 19, p. 3353. https://doi.org/10.1021/acs.organomet.8b00575

    Article  CAS  Google Scholar 

  126. Liang, R., Li, S., Wang, R., Lu, L., and Li, F., Org. Lett., 2017, vol. 19, no. 21, p. 5790. https://doi.org/10.1021/acs.orglett.7b02723

    Article  CAS  PubMed  Google Scholar 

  127. Rasero-Almansa, A.M., Corma, A., Iglesias, M., and Sánchez, F., ChemCatChem, 2014, vol. 6, no. 6, p. 1794. https://doi.org/10.1002/cctc.201402101

    Article  CAS  Google Scholar 

  128. Chen, J., Wu, J., and Tu, T., ACS Sustain. Chem. Eng., 2017, vol. 5, no. 12, p. 11744. https://doi.org/10.1021/acssuschemeng.7b03246

    Article  CAS  Google Scholar 

  129. Gnanamgari, D., Sauer, E.L.O., Schley, N.D., Butler, C., Incarvito, C.D., and Crabtree, R.H., Organometallics, 2009, vol. 28, no. 1, p. 321. https://doi.org/10.1021/om800821q

    Article  CAS  Google Scholar 

  130. Grigg, R., Mitchell, T.R.B., Sutthivaiyakit, S., and Tongpenyai, N., J. Chem. Soc. Chem. Commun., 1981, no. 12, p. 611. https://doi.org/10.1039/c39810000611

    Article  Google Scholar 

  131. Michlik, S. and Kempe, R., Chem. Eur. J., 2010, vol. 16, no. 44, p. 13193. https://doi.org/10.1002/chem.201001871

    Article  CAS  PubMed  Google Scholar 

  132. Fujita, K., Li, Z., Ozeki, N., and Yamaguchi, R., Tetrahedron Lett., 2003, vol. 44, no. 13, p. 2687. https://doi.org/10.1016/S0040-4039(03)00371-X

    Article  CAS  Google Scholar 

  133. Fujita, K., Enoki, Y., and Yamaguchi, R., Tetrahedron, 2008, vol. 64, no. 8, p. 1943. https://doi.org/10.1016/j.tet.2007.11.083

    Article  CAS  Google Scholar 

  134. Fu, A., Liu, Q., Jiang, M., and Xu, G., Asian J. Org. Chem., 2019, vol. 8, no. 4, p. 487. https://doi.org/10.1002/ajoc.201900140

    Article  CAS  Google Scholar 

  135. Oikawa, K., Itoh, S., Yano, H., Kawasaki, H., and Obora, Y., Chem. Commun., 2017, vol. 53, no. 6, p. 1080. https://doi.org/10.1039/C6CC09279A

    Article  CAS  Google Scholar 

  136. Blank, B., Madalska, M., and Kempe, R., Adv. Synth. Catal., 2008, vol. 350, no. 5, p. 749. https://doi.org/10.1002/adsc.200700596

    Article  CAS  Google Scholar 

  137. Prades, A., Corberán, R., Poyatos, M., and Peris, E., Chem. Eur. J., 2008, vol. 14, no. 36, p. 11474. https://doi.org/10.1002/chem.200801580

    Article  CAS  PubMed  Google Scholar 

  138. Bertoli, M., Choualeb, A., Lough, A.J., Moore, B., Spasyuk, D., and Gusev, D.G., Organometallics, 2011, vol. 30, no. 13, p. 3479. https://doi.org/10.1021/om200437n

    Article  CAS  Google Scholar 

  139. Martínez-Asencio, A., Ramón, D.J., and Yus, M., Tetrahedron, 2011, vol. 67, no. 17, p. 3140. https://doi.org/10.1016/j.tet.2011.02.075

    Article  CAS  Google Scholar 

  140. Seyed, P.M., Behzad, S.H., and Mansour, S., ChemXpress, 2017, vol. 10, no. 2, p. 125.

  141. Bayguzina, A.R., Musina, C.F., and Khusnutdinov, R.I., Russ. J. Org. Chem., 2018, vol. 54, no. 11, p. 1652. https://doi.org/10.1134/S1070428018110052

    Article  CAS  Google Scholar 

  142. Martínez-Asencio, A., Yus, M., and Ramón, D.J., Synthesis, 2011, no. 22, p. 3730. https://doi.org/10.1055/s-0030-1260238

    Article  CAS  Google Scholar 

  143. Dang, T.T., Shan, S.P., Ramalingam, B., and Seayad, A.M., RSC Adv., 2015, vol. 5, no. 53, p. 42399. https://doi.org/10.1039/c5ra07225e

    Article  CAS  Google Scholar 

  144. Abdukader, A., **, H., Cheng, Y., and Zhu, C., Tetrahedron Lett., 2014, vol. 55, no. 30, p. 4172. https://doi.org/10.1016/j.tetlet.2014.05.068

    Article  CAS  Google Scholar 

  145. Wei, D., Sadek, O., Dorcet, V., Roisnel, T., Darcel, C., Gras, E., Clot, E., and Sortais, J.B., J. Catal., 2018, vol. 366, p. 300. https://doi.org/10.1016/j.jcat.2018.08.008

    Article  CAS  Google Scholar 

  146. Gour, J., Gatadi, S., Malasala, S., Yaddanpudi, M.V., and Nanduri, S., J. Org. Chem., 2019, vol. 84, no. 11, p. 7488. https://doi.org/10.1021/acs.joc.9b00717

    Article  CAS  PubMed  Google Scholar 

  147. Yang, H., Mao, R., Luo, C., Lu, C., and Cheng, G., Tetrahedron, 2014, vol. 70, N 46, p. 8829. https://doi.org/10.1016/j.tet.2014.10.007

    Article  CAS  Google Scholar 

  148. Khusnutdinov, R.I., Baygusina, A.R., Aminov, R.I., and Dzhemilev, U.M., Russ. J. Org. Chem., 2012, vol. 48, no. 5, p. 690. https://doi.org/10.1134/S1070428012050107

    Article  CAS  Google Scholar 

  149. Trotta, F., Tundo, P., and Moraglio, G., J. Org. Chem., 1987, vol. 52, no. 7, p. 1300. https://doi.org/10.1021/jo00383a024

    Article  CAS  Google Scholar 

  150. Selva, M., Bomben, A., and Tundo, P., J. Chem. Soc. Perkin Trans. 1, 1997, no. 7, p. 1041. https://doi.org/10.1039/a606684d

    Article  Google Scholar 

  151. Selva, M., Tundo, P., and Perosa, A., J. Org. Chem., 2001, vol. 66, no. 3, p. 677. https://doi.org/10.1021/jo0006728

    Article  CAS  PubMed  Google Scholar 

  152. Delledonne, D., Rivetti, F., and Romano, U., Appl. Catal. (A), 2001, vol. 221, no. 1–2, p. 241. https://doi.org/10.1016/S0926-860X(01)00796-7

    Article  CAS  Google Scholar 

  153. Ono, Y., Appl. Catal. (A), 1997, vol. 155, no. 2, p. 133. https://doi.org/10.1016/S0926-860X(96)00402-4

    Article  CAS  Google Scholar 

  154. Selva, M. and Fabris, M., Green Chem., 2009, vol. 11, no. 8, p. 1161. https://doi.org/10.1039/b904821a

    Article  CAS  Google Scholar 

  155. Fu, Z. and Ono, Y., Catal. Lett., 1993, vol. 22, no. 3, p. 277. https://doi.org/10.1007/BF00810375

    Article  CAS  Google Scholar 

  156. Hari Prasad Rao, P.R., Massiani, P., and Barthomeuf, D., Catal. Lett., 1995, vol. 31, no. 1, p. 115. https://doi.org/10.1007/BF00817038

    Article  Google Scholar 

  157. Selva, M., J. Mol. Catal. (A), 2004, vol. 222, nos. 1–2, p. 273. https://doi.org/10.1016/j.molcata.2004.07.011

    Article  CAS  Google Scholar 

  158. Selva, M., Tundo, P., and Perosa, A., J. Org. Chem., 2002, vol. 67, no. 26, p. 9238. https://doi.org/10.1021/jo026057g

    Article  CAS  PubMed  Google Scholar 

  159. Selva, M., Tundo, P., and Foccardi, T., J. Org. Chem., 2005, vol. 70, no. 7, p. 2476. https://doi.org/10.1021/jo048076r

    Article  CAS  PubMed  Google Scholar 

  160. Selva, M., Tundo, P., and Perosa, A., J. Org. Chem., 2003, vol. 68, no. 19, p. 7374. https://doi.org/10.1021/jo034548a

    Article  CAS  PubMed  Google Scholar 

  161. Khusnutdinov, R.I., Shchadneva, N.A., Mayakova, Y.Y., Ardieva, S.I., Khazipova, A.N., and Kutepov, B.I., Russ. J. Org. Chem., 2016, vol. 52, no. 11, p. 1565. https://doi.org/10.1134/S1070428016110038

    Article  CAS  Google Scholar 

  162. Khusnutdinov, R.I., Shchadneva, N.A., Mayakova, Y.Y., Abdrakhmanov, A.N., Khazipova, A.N., and Kutepov, B.I., Russ. J. Org. Chem., 2019, vol. 55, no. 8, p. 1085. https://doi.org/10.1134/S1070428019080049

    Article  CAS  Google Scholar 

  163. Juarez, R., Padilla, A., Corma, A., and Garcia, H., Catal. Commun., 2009, vol. 10, no. 5, p. 472. https://doi.org/10.1016/j.catcom.2008.10.009

    Article  CAS  Google Scholar 

  164. Rojas-Buzo, S., García-García, P., and Corma, A., Catal. Sci. Technol., 2019, vol. 9, no. 1, p. 146. https://doi.org/10.1039/C8CY02235F

    Article  CAS  Google Scholar 

  165. Dhakshinamoorthy, A., Alvaro, M., and Garcia, H., Appl. Catal. (A), 2010, vol. 378, no. 1, p. 19. https://doi.org/10.1016/j.apcata.2010.01.042

    Article  CAS  Google Scholar 

  166. Jyothi, T.M., Raja, T., Talawar, M.B., and Sreekumar, K., Synth. Commun., 2000, vol. 30, no. 21, p. 3929. https://doi.org/10.1080/00397910008086951

    Article  CAS  Google Scholar 

  167. Gooden, P.N., Bourne, R.A., Parrott, A.J., Bevinakatti, H.S., Irvine, D.J., and Poliakoff, M., Org. Process Res. Dev., 2010, vol. 14, no. 2, p. 411. https://doi.org/10.1021/op900307w

    Article  CAS  Google Scholar 

  168. Amara, Z., Streng, E.S., Skilton, R.A., **, J., George, M.W., and Poliakoff, M., Eur. J. Org. Chem., 2015, vol. 2015, no. 28, p. 6141. https://doi.org/10.1002/ejoc.201500980

    Article  CAS  Google Scholar 

  169. Tayebee, R., Seresht, E.R., Jafari, F., and Rabiei, S., Ind. Eng. Chem. Res., 2013, vol. 52, no. 32, p. 11001. https://doi.org/10.1021/ie4018786

    Article  CAS  Google Scholar 

  170. Zheng, J., Darcel, C., and Sortais, J.B., Chem. Commun., 2014, vol. 50, no. 91, p. 14229. https://doi.org/10.1039/c4cc05517a

    Article  CAS  Google Scholar 

  171. Cabrero-Antonino, J.R., Adam, R., Junge, K., and Beller, M., Catal. Sci. Technol., 2016, vol. 6, no. 22, p. 7956. https://doi.org/10.1039/c6cy01401a

    Article  CAS  Google Scholar 

  172. Cabrero-Antonino, J.R., Adam, R., Wärnå, J., Murzin, D.Y., and Beller, M., Chem. Eng. J., 2018, vol. 351, p. 1129. https://doi.org/10.1016/j.cej.2018.06.174

    Article  CAS  Google Scholar 

  173. Li, Y., Sorribes, I., Vicent, C., Junge, K., and Beller, M., Chem. Eur. J., 2015, vol. 21, no. 47, p. 16759. https://doi.org/10.1002/chem.201502917

    Article  CAS  PubMed  Google Scholar 

  174. Guyon, C., Duclos, M.-C., Métay, E., and Lemaire, M., Tetrahedron Lett., 2016, vol. 57, nos. 27–28, p. 3002. https://doi.org/10.1016/j.tetlet.2016.05.094

    Article  CAS  Google Scholar 

  175. Li, B., Zheng, J., Zeng, W., Li, Y., and Chen, L., Synthesis, 2016, vol. 49, no. 6, p. 1349. https://doi.org/10.1055/s-0036-1588092

    Article  CAS  Google Scholar 

  176. Byun, E., Hong, B., De Castro, K.A., Lim, M., and Rhee, H., J. Org. Chem., 2007, vol. 72, no. 25, p. 9815. https://doi.org/10.1021/jo701503q

    Article  CAS  PubMed  Google Scholar 

  177. Wang, H., Huang, Y., Dai, X., and Shi, F., Chem. Commun., 2017, vol. 53, no. 40, p. 5542. https://doi.org/10.1039/c7cc02314f

    Article  CAS  Google Scholar 

  178. Ge, X., Luo, C., Qian, C., Yu, Z., and Chen, X., RSC Adv., 2014, vol. 4, no. 81, p. 43195. https://doi.org/10.1039/c4ra04414b

    Article  CAS  Google Scholar 

  179. Wei, D., Bruneau-Voisine, A., Valyaev, D.A., Lugan, N., and Sortais, J.B., Chem. Commun., 2018, vol. 54, no. 34, p. 4302. https://doi.org/10.1039/c8cc01787e

    Article  CAS  Google Scholar 

  180. Zhang, M., Yang, H., Zhang, Y., Zhu, C., Li, W., Cheng, Y., and Hu, H., Chem. Commun., 2011, vol. 47, no. 23, p. 6605. https://doi.org/10.1039/c1cc11201e

    Article  CAS  Google Scholar 

  181. Li, C., Villa-Marcos, B., and **ao, J., J. Am. Chem. Soc., 2009, vol. 131, no. 20, p. 6967. https://doi.org/10.1021/ja9021683

    Article  CAS  PubMed  Google Scholar 

  182. Tlili, A., Blondiaux, E., Frogneux, X., and Cantat, T., Green Chem., 2015, vol. 17, no. 1, p. 157. https://doi.org/10.1039/c4gc01614a

    Article  CAS  Google Scholar 

  183. Li, Y., Fang, X., Junge, K., and Beller, M., Angew. Chem. Int. Ed., 2013, vol. 52, no. 36, p. 9568. https://doi.org/10.1002/anie.201301349

    Article  CAS  Google Scholar 

  184. Li, Y., Sorribes, I., Yan, T., Junge, K., and Beller, M., Angew. Chem. Int. Ed., 2013, vol. 52, no. 46, p. 12156. https://doi.org/10.1002/anie.201306850

    Article  CAS  Google Scholar 

  185. Beydoun, K., Vom Stein, T., Klankermayer, J., and Leitner, W., Angew. Chem. Int. Ed., 2013, vol. 52, no. 36, p. 9554. https://doi.org/10.1002/anie.201304656

    Article  CAS  Google Scholar 

  186. Beydoun, K., Ghattas, G., Thenert, K., Klankermayer, J., and Leitner, W., Angew. Chem. Int. Ed., 2014, vol. 53, no. 41, p. 11010. https://doi.org/10.1002/anie.201403711

    Article  CAS  Google Scholar 

  187. Cui, X., Zhang, Y., Deng, Y., and Shi, F., Chem. Commun., 2014, vol. 50, no. 88, p. 13521. https://doi.org/10.1039/C4CC05119J

    Article  CAS  Google Scholar 

  188. Su, X., Lin, W., Cheng, H., Zhang, C., Li, Y., Liu, T., Zhang, B., Wu, Q., Yu, X., and Zhao, F., RSC Adv., 2016, vol. 6, no. 105, p. 103650. https://doi.org/10.1039/C6RA22089D

    Article  CAS  Google Scholar 

  189. Toyao, T., Siddiki, S.M.A.H., Morita, Y., Kamachi, T., Touchy, A.S., Onodera, W., Kon, K., Furukawa, S., Ariga, H., Asakura, K., Yoshizawa, K., and Shimizu, K.I., Chem. Eur. J., 2017, vol. 23, no. 59, p. 14848. https://doi.org/10.1002/chem.201702801

    Article  CAS  PubMed  Google Scholar 

  190. Du, X.-L., Tang, G., Bao, H.-L., Jiang, Z., Zhong, X.-H., Su, D.S., and Wang, J.-Q., ChemSusChem, 2015, vol. 8, no. 20, p. 3489. https://doi.org/10.1002/cssc.201500486

    Article  CAS  PubMed  Google Scholar 

  191. Lam, R.H., McQueen, C.M.A., Pernik, I., McBurney, R.T., Hill, A.F., and Messerle, B.A., Green Chem., 2019, vol. 21, no. 3, p. 538. https://doi.org/10.1039/c8gc03094d

    Article  CAS  Google Scholar 

  192. Savourey, S., Lefèvre, G., Berthet, J.-C., and Cantat, T., Chem. Commun., 2014, vol. 50, no. 90, p. 14033. https://doi.org/10.1039/C4CC05908E

    Article  CAS  Google Scholar 

  193. Qiao, C., Yao, X.Y., Liu, X.F., Li, H.R., and He, L.N., Asian J. Org. Chem., 2018, vol. 7, no. 9, p. 1815. https://doi.org/10.1002/ajoc.201800420

    Article  CAS  Google Scholar 

  194. Qiao, C., Liu, X.-F., Liu, X., and He, L.-N., Org. Lett., 2017, vol. 19, no. 6, p. 1490. https://doi.org/10.1021/acs.orglett.7b00551

    Article  CAS  PubMed  Google Scholar 

  195. Sorribes, I., Junge, K., and Beller, M., Chem. Eur. J., 2014, vol. 20, no. 26, p. 7878. https://doi.org/10.1002/chem.201402124

    Article  CAS  PubMed  Google Scholar 

  196. Zhu, L., Wang, L.-S., Li, B., Li, W., and Fu, B., Catal. Sci. Technol., 2016, vol. 6, no. 16, p. 6172. https://doi.org/10.1039/C6CY00674D

    Article  CAS  Google Scholar 

  197. Sun, N., Wang, S., Mo, W., Hu, B., Shen, Z., and Hu, X., Tetrahedron, 2010, vol. 66, no. 35, p. 7142. https://doi.org/10.1016/j.tet.2010.06.091

    Article  CAS  Google Scholar 

  198. Kundu, S.K., Mitra, K., and Majee, A., RSC Adv., 2013, vol. 3, no. 23, p. 8649. https://doi.org/10.1039/c3ra40509e

    Article  CAS  Google Scholar 

  199. Yin, Z., Zeng, H., Wu, J., Zheng, S., and Zhang, G., ACS Catal., 2016, vol. 6, no. 10, p. 6546. https://doi.org/10.1021/acscatal.6b02218

    Article  CAS  Google Scholar 

  200. Linciano, P., Pizzetti, M., Porcheddu, A., and Taddei, M., Synlett, 2013, vol. 24, no. 17, p. 2249. https://doi.org/10.1055/s-0033-1339667

    Article  CAS  Google Scholar 

  201. Arachchige, P.T.K., Lee, H., and Yi, C.S., J. Org. Chem., 2018, vol. 83, no. 9, p. 4932. https://doi.org/10.1021/acs.joc.8b00649

    Article  CAS  PubMed  Google Scholar 

  202. Lubinu, M.C., De Luca, L., Giacomelli, G., and Porcheddu, A., Chem. Eur. J., 2011, vol. 17, no. 1, p. 82. https://doi.org/10.1002/chem.201002704

    Article  CAS  PubMed  Google Scholar 

  203. Sajiki, H., Ikawa, T., and Hirota, K., Org. Lett., 2004, vol. 6, no. 26, p. 4977. https://doi.org/10.1021/ol047871o

    Article  CAS  PubMed  Google Scholar 

  204. Jiao, J., Zhang, X.-R., Chang, N.-H., Wang, J., Wei, J.-F., Shi, X.-Y., and Chen, Z.-G., J. Org. Chem., 2011, vol. 76, no. 4, p. 1180. https://doi.org/10.1021/jo102169t

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The work was carried out within the framework of the governmental task of the Ministry of Science and Higher Education of the Russian Federation (reg. no. AAAAA19-119022290009-3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. R. Bayguzina.

Ethics declarations

No conflict of interest was declared by the authors.

Additional information

Translated from Zhurnal Obshchei Khimii, 2021, Vol. 91, No. 3, pp. 331–375 https://doi.org/10.31857/S0044460X2103001X.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bayguzina, A.R., Khusnutdinov, R.I. Catalytic N-Alkylation of Anilines. Russ J Gen Chem 91, 305–347 (2021). https://doi.org/10.1134/S1070363221030014

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070363221030014

Keywords:

Navigation