Log in

Structural Characterization, Hirshfeld Analyses, Fluorescence, and Catalytic Oxidase Properties of New Cu(II) and Co(II) Halogen-Substituted Salamo-Based Complexes

  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

Two mononuclear Cu(II) and Co(II) halogen-substituted salamo-based complexes of the formulas [Cu(L)] and [Co(L)(H2O)2] have been synthesized and characterized by elemental analyses, FT-IR and UV-Vis absorption spectra, and X-ray crystallography. The Cu(II) complex has crystallized in the monoclinic system, space group P21/n with Cu(II) atom located in the N2O2 cavity. In the Co(II) complex, the center Co(II) atom has exhibited a slightly distorted octahedral geometry with halogen-substituted salamo-based bisoxime forming the basal N2O2 coordination plane and two oxygen atoms of two coordinated water molecules in the axial positions. Non-covalent interactions like hydrogen bonding and π···π stacking interactions are operative in construction of supramolecular architectures. The crystal structures and supramolecular features of the complexes have been discussed in details. Hirshfeld surfaces analyses has indicated stability of both complexes. The Cu(II) complex has demonstrated excellent bio-inspired catalytic properties towards oxidative coupling of 2-AP in MeCN medium. Fluorescence properties of H2L and its Cu(II) and Co(II) complexes have also been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Scheme 1.

Similar content being viewed by others

Notes

  1. Crystallographic data have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication, no. CCDC 2039525 and 2039524 contain the supplementary crystallographic data for the Cu(II) and Co(II) complexes. These data can be obtained free of charge via http://www.ccdc.cam.ac.uk/conts/retrieving.html, or from the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: (+44) 1223-336-033; or e-mail: deposit@ccdc.cam.ac.uk.

REFERENCES

  1. Akine, S., Miyashita, M., and Nabeshima, T., Chem. Eur. J., 2019, vol. 25, p. 1366. https://doi.org/10.1002/chem.201806184

    Article  CAS  Google Scholar 

  2. Tsuruoka, T., Ohhashi, T., Watanabe, J., Yamada, R., Hirao, S., Takashima, Y., Demessence, A., Vaidya, S., Veselska, O., Fateeva, A., and Akamatsu, K., Cryst. Growth Des., 2020, vol. 20, p. 1961. https://doi.org/10.1021/acs.cgd.9b01622

    Article  CAS  Google Scholar 

  3. Hemmat, K., Nasseri, M.A., and Allahresani, A., Chemistry Select, 2019, vol. 4, p. 4339. https://doi.org/10.1002/slct.201900696

    Article  CAS  Google Scholar 

  4. Kobayashi, Y., Obayashi, R., Watanabe, Y., Miyazaki, H., Miyata, I., Suzuki, Y., Yoshida, Y., Shioiri, T., and Matsugi, M., Eur. J. Org. Chem., 2019, vol. 13, p. 2401. https://doi.org/10.1002/ejoc.201900146

    Article  CAS  Google Scholar 

  5. Umemura, M., Islam, M. R., Fukumura, H., Sato, I., Kawabata, Y., Matsuo, K., Nakakaji, R., Nagasako, A., Ohtake, M., Takayuki, F., Yokoyama, U., Nakayama, T., Eguchi, H., and Ishikawa, Y., Cancer Sci., 2019, vol. 110, p. 356. https://doi.org/10.1111/cas.13851

    Article  CAS  PubMed  Google Scholar 

  6. Akine, S. and Phenom, J.I., Macrocycl. Chem., 2012, vol. 72, p. 25–54. https://doi.org/10.1007/s10847-011-0026-3

    Article  CAS  Google Scholar 

  7. Zhang, Y., Li, Y.J., Guo, S.Z., Fu, T., and Zhao, L., Transit. Met. Chem., 2020, vol. 45, p. 485. https://doi.org/10.1007/s11243-020-00400-0

    Article  CAS  Google Scholar 

  8. Chang, J., Zhang, S.Z., Wu, Y., Zhang, H.J., and Sun, Y.X., Transit. Met. Chem., 2020, vol. 45, p. 279–293. https://doi.org/10.1007/s11243-020-00379-8

    Article  CAS  Google Scholar 

  9. An, X.X., Zhao, Q. Mu, H.R., and Dong, W.K., Crystals, 2019, vol. 9, p. 101. https://doi.org/10.3390/cryst.9020101

    Article  CAS  Google Scholar 

  10. Bian, R.N., Wang, J.F., Li, Y. J., Zhang, Y., and Dong, W.K., J. Photochem. Photobiol. A, 2020, vol. 400, p. 112829. https://doi.org/10.1016/j.jphotochem.2020.112829

    Article  CAS  Google Scholar 

  11. Li, X.Y., Kang, Q.P., Liu, C., Zhang, Y., and Dong, W.K., New J. Chem., 2019, vol. 43, p. 4605. https://doi.org/10.1039/c9nj00014c

    Article  CAS  Google Scholar 

  12. Kang, Q.P., Li, X.Y., Wang, L., Zhang, Y., and Dong, W.K., Appl. Organomet. Chem., 2019, vol. 33, p. e5013. https://doi.org/10.1002/aoc.5013

  13. Kang, Q.P., Li, X.Y., Wei, Z.L., Zhang, Y., and Dong, W.K., Polyhedron, 2019, vol. 165, p. 38. https://doi.org/10.1016/j.poly.2019.03.008

    Article  CAS  Google Scholar 

  14. Liu, L.Z., Yu, M., Li, X.Y., Kang, Q.P., and Dong, W.K., Chin. J. Inorg. Chem., 2019, vol. 35, p. 1283. https://doi.org/10.11862/CJIC.2019.158

    Article  CAS  Google Scholar 

  15. Schäfer, T., Sedykh, A. E., Becker, J., and Buschbaum, K.M., Z. Anorg. Allg. Chem., 2020, vol. 646, p. 1. https://doi.org/10.1002/zaac.202000103

    Article  CAS  Google Scholar 

  16. An, X.X., Liu, C., Chen, Z.Z., **e, K.F., and Dong, W.K., Crystal, 2019, vol. 9, p. 602. https://doi.org/10.3390/cryst9080408

    Article  CAS  Google Scholar 

  17. Cui, Y.F., Zhang, Y., **e, K.F., and Dong, W.K., Crystal., 2019, vol. 9, p. 596. https://doi.org/10.3390/cryst9110596

    Article  CAS  Google Scholar 

  18. Xu, L., Yu, M., Li, L.H., Ma, J.C., Dong, and W.K., J. Struct. Chem., 2019, vol. 60, p. 1358. https://doi.org/10.1134/s0022476619080109

    Article  CAS  Google Scholar 

  19. Li, X.Y., Kang, Q.P., Liu, C., Zhang, Y., and Dong, W.K., New J. Chem., 2019, vol. 43, p. 4605. https://doi.org/10.1039/c9nj00014c

    Article  CAS  Google Scholar 

  20. Zhang, Y., Pan, Y.Q., Yu, M., Xu, X., and Dong, W.K., Appl. Organomet. Chem., 2019, vol. 33, p. e5240. https://doi.org/10.1002/aoc.5240

  21. An, X.X., Chen, Z.Z., Mu, H.R., and Zhao, L., Inorg. Chim. Acta, 2020, vol. 511, p. 119823. https://doi.org/10.1016/j.ica.119823

    Article  CAS  Google Scholar 

  22. Mu, H.R., An, X.X., Liu, C., Zhang, Y., and Dong, W.K., J. Struct. Chem., 2020, vol. 61, p. 1155. https://doi.org/10.26902/JSC_id60699

    Article  Google Scholar 

  23. Zhang, S.Z., Chang, J., Zhang, H.J., Sun, Y.X., Wu, Y., and Wang, Y.B., Chin. J. Inorg. Chem., 2020, vol. 36, p. 503. https://doi.org/10.11862/CJIC.2020.056

    Article  CAS  Google Scholar 

  24. Xu, X., Li, Y.J., Feng, T., Dong, W.K., and Ding, Y.J., Luminescence, 2020, vol. 3932. https://doi.org/10.1002/bio.3932

  25. Xu, X., Wang, J.F., Bian, R.N., and Zhao, L., J. Coord. Chem., 2020, vol. 73, p. 2209. https://doi.org/10.1080/00958972.2020.1822524

    Article  CAS  Google Scholar 

  26. Peng, Y.D., Zhang, Y., Jiang, Y.L., Ren, Z.L., Wang, F., and Wang, L., J. Fluores., 2020, vol. 30, p. 1049. https://doi.org/10.1007/s10895-020-02579-y

    Article  CAS  Google Scholar 

  27. Wei, Z.L., Wang, L., Wang, J.F., Guo, W.T., Zhang, Y., and Dong, W.K., Spectrochim. Acta A, 2020, vol. 228, p. 117775. https://doi.org/10.1016/j.saa.2019.117775

    Article  CAS  Google Scholar 

  28. Pan, Y.Q., Zhang, Y., Yu, M., Zhang, Y., and Wang, L., Appl. Organomet. Chem., 2020, vol. 34, p. e5441. https://doi.org/10.1002/aoc.5441

  29. Liu, L.Z., Wang, L., Yu, M., Zhao, Q., Zhang, Y., Sun, Y.X., and Dong, W.K., Spectrochim. Acta A, 2019, vol. 222, p. 117209. https://doi.org/10.1016/j.saa.2019.117209

    Article  CAS  Google Scholar 

  30. Wang, L., Wei, Z.L., Chen, Z.Z., Liu, C., Dong, W.K., and Ding, Y.J., Inorg. Chim. Acta, 2020, vol. 506, p. 119534. https://doi.org/10.1016/j.microc.2020.104801

    Article  CAS  Google Scholar 

  31. Wang, L., Wei, Z.L., Chen, Z.Z., Liu, C., Dong, W.K., and Ding, Y.J., Microchem. J., 2020, vol. 155, p. 104801. https://doi.org/10.1016/j.microc.2020.104801

    Article  CAS  Google Scholar 

  32. De, A., Garai, M., Yadav, H.R., Choudhury, A.R., and Biswas, B., Appl. Organometal. Chem., 2017, vol. 31, p. e3551. https://doi.org/10.1002/aoc.3551

  33. Sakata, Y., Chiba, S., Miyashita, M., Nabeshima, T., and Akine, S., Chem. Eur. J., 2019, vol. 25, p. 2962. https://doi.org/10.1002/chem.201805799

    Article  CAS  PubMed  Google Scholar 

  34. Smirnov, A.S., Martins, L.M.D.R.S., Nikolaev, D.N., Manzhos, R.A., Gurzhiy, V.V., Krivenko, A.G., Nikolaenko, K.O., Belyakov, A.V., Garabadzhiua, A.V., and Davidovich, P.B., New J. Chem., 2020, vol. 43, p. 188. https://doi.org/10.1039/C8NJ02718H

    Article  Google Scholar 

  35. Dutta, T., Mirdya, S., Giri, P., and Chattopadhyay, S., Polyhedron, 2020, vol. 175, p. 114164. https://doi.org/10.1016/j.poly.2019.114164

    Article  CAS  Google Scholar 

  36. Das, S., Sahu, A., Joshi, M., Paul, S., Shit, M., Choudhury, A.R., and Biswas, B., Chemistry Select, 2020, vol. 3, p. 10774. https://doi.org/10.1002/slct.201702354

    Article  CAS  Google Scholar 

  37. Nakamura, T., Tsukuda, S., and Nabeshima, T., J. Am. Chem. Soc., 2019, vol. 141, p. 6462–6467. https://doi.org/10.1021/jacs.9b00171

    Article  CAS  PubMed  Google Scholar 

  38. Li, J., Zhang, H.J., Chang, J., Jia, H.R., Sun, Y.X., and Huang, Y.Q., Crystals, 2018, vol. 8, p. 176. https://doi.org/10.3390/cryst8040176

    Article  CAS  Google Scholar 

  39. Chang, J., Zhang, H.J., Jia, H.R., and Sun, Y.X., Chin. J. Inorg. Chem., 2018, vol. 34, p. 2097. https://doi.org/10.11862/CJIC.2020.256

    Article  CAS  Google Scholar 

  40. Jia, H.R., Chang, J., Zhang, H., Li, J., and Sun, Y.X., Crystals, 2018, vol. 8, p. 272. https://doi.org/10.3390/cryst8070272

    Article  CAS  Google Scholar 

  41. Pan, Y.Q., Xu, X., Zhang, Y., Zhang, Y., and Dong, W.K., Spectrochim. Acta A, 2020, vol. 229, p. 117927. https://doi.org/10.1016/j.saa.2019.117927

    Article  CAS  Google Scholar 

  42. Dong, W.K., Zhang, L.S., Sun, Y.X., Zhao, M.M., Li, G., and Dong, X.Y., Spectrochimi. Acta A, 2014, vol. 121, p. 324. https://doi.org/10.1016/j.saa.2013.10.072

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (21761018), Science and Technology Program of Gansu Province (18YF1GA057) and the Program for Excellent Team of Scientific Research in Lanzhou Jiaotong University (201706), three of which are gratefully acknowledged. Computations were done using National Supercomputing Center in Shenzhen, P. R. China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W.-K. Dong.

Ethics declarations

No conflict of interest was declared by the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, SZ., Li, YJ., Feng, SS. et al. Structural Characterization, Hirshfeld Analyses, Fluorescence, and Catalytic Oxidase Properties of New Cu(II) and Co(II) Halogen-Substituted Salamo-Based Complexes. Russ J Gen Chem 90, 2435–2443 (2020). https://doi.org/10.1134/S107036322012035X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S107036322012035X

Keywords:

Navigation