Log in

Structural characteristics of the rubidium fluoride aqueous solutions under standard conditions

  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

The method of integral equations in XRISM-approximation was used to calculate structural parameters of the RbF aqueous solutions in the concentration range 2.22–11.1 m at standard conditions (T = 298 K, p = 0.1 MPa). Based on these data, we have determined the concentration limit for the existence of solvent in the solution in tetrahedral structure (3.08 m) and the concentration patterns of structuring the RbF-H2O system. Upon increase in the concentration from 2.22 to 11.1 m the system is shown to undergo the coordination dehydration of the ions with simultaneous increase of the ionic association with a possibility to form the ionic and ion-water cluster-type groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ohtaki, H. and Radnai, T., Chem. Rev., 1993, vol. 93, no. 3, p. 1157.

    Article  CAS  Google Scholar 

  2. D’Angelo, P. and Persson, I., Inorg. Chem., 2004, vol. 43, no. 11, p. 3543.

    Article  Google Scholar 

  3. Kubozono, Y., Hirano, A., Maeda, H., Kashino, S., Emura, S., and Ishida, H., Z. Naturforsh., A, 1994, vol. 49, no. 6, p. 727.

    CAS  Google Scholar 

  4. Cummings, S., Enderby, J.E., Neilson, G.W., Newsome, J.R., Howe, R.A., Howells, W.S., and Soper, A.K., Nature, 1980, vol. 287, no. 5784, p. 714.

    Article  CAS  Google Scholar 

  5. Ramos, S., Barnes, A.C., Neilson, G.W., and Capitan, M., J. Chem. Phys., 2000, vol. 258, nos. 2–3, p. 151.

    Google Scholar 

  6. Ansell, S., Barnes, A.C., Mason, P.E., Neilson, G.W., and Ramos, S., Biophys. Chem., 2006, vol. 124, no. 4, p. 171.

    Article  CAS  Google Scholar 

  7. Oparin, R.D., Fedotova, M.V., and Trostin, V.N., Zh. Obshch. Khim., 2004, vol. 74, no. 1, p. 17.

    Google Scholar 

  8. Du, H., Rasaiah, J.C., and Miller, J.D., J. Phys. Chem., Part B, 2007, vol. 111, no. 1, p. 209.

    Article  CAS  Google Scholar 

  9. Bertagnolli, H., Ertel, T.S, Hoffmann, M., and Frahm, R., Ber. Bunsenges. Phys. Chem., 1991, vol. 95, no. 6, p. 704.

    CAS  Google Scholar 

  10. Harsányi, I., Jóvári, P., Mészáros, G., Pusztai, L., and Bopp Ph.A., J. Mol. Liq., 2007, vols. 131–132, p. 60.

    Article  Google Scholar 

  11. Pusztai, L., Dominguez, H., Pizio, O., and Sokolowski, S., J. Mol. Liq., 2009, vol. 147, nos. 1–2, p. 52.

    Article  CAS  Google Scholar 

  12. Fulton, J.L., Pfund, D.M., Wallen, S.L., Newville, M., and Stern, E.A., Ma, Y., J. Chem. Phys., 1996, vol. 105, no. 6, p. 2161.

    Article  CAS  Google Scholar 

  13. Ferlat, G., San Miguel, A., Jal, J.F., Soetens, J.-C., Bopp, P.A., Daniel, I., Guillot, S., Hazemann, J.L., and Argoud, R., Phys. Rev., B, 2001, vol. 63, no. 13, p. 134202.

    Article  Google Scholar 

  14. Aqvist, J., J. Phys. Chem., 1990, vol. 94, no. 21, p. 8021.

    Article  Google Scholar 

  15. Hofer Th.S., Randolf, B.R., and Rode, B.M., J. Comput. Chem., 2005, vol. 26, no. 9, p. 949.

    Article  CAS  Google Scholar 

  16. Nikologorskaya, E.L., Kuznetsov, V.V., Grechin, O.V., and Trostin, V.N., Zh. Neorg. Khim., 2000, vol. 45, no. 11, p. 1759.

    Google Scholar 

  17. Terekhova, D.S., Ryss, A.L., and Radchenko, I.V., Zh. Strukt. Khim., 1969, vol. 10. no. 5, p. 923.

    Google Scholar 

  18. Fedotova, M.V. and Gavrilova, E.L., Zh. Obshch. Khim., 2009, vol. 79, no. 1, p. 9.

    Google Scholar 

  19. Bertagnolli, H., Weidner, J.-U., and Zimmermann, H.W., Ber. Bunsenges. Phys. Chem., 1974, vol. 78, no. 1, p. 2.

    CAS  Google Scholar 

  20. Zhu, S.-B. and Robinson, G.W., Z. Naturforsch., A, 1991, vol. 46, no. 3, p. 221.

    CAS  Google Scholar 

  21. Fromm, J., Clementi, E., and Watts, R.O., J. Chem. Phys., 1975, vol. 62, no. 11, p. 1388.

    Article  CAS  Google Scholar 

  22. Szász, G.I. and Heinzinger, K., Z. Naturforsh., A, 1983, vol. 38, no. 2, p. 214.

    Google Scholar 

  23. Heinzinger, K. and Vogel, P.C., Z. Naturforsch., A, 1976, vol. 31, no. 5, p. 463.

    Google Scholar 

  24. Craig, J.D.C. and Brooker, M.H., J. Solut. Chem., 2000, vol. 29, no. 10, p. 879.

    Article  CAS  Google Scholar 

  25. Impey, R.W., Maden, P.A., and McDonald, I.R., J. Phys. Chem., 1983, vol. 87, no. 25, p. 5071.

    Article  CAS  Google Scholar 

  26. Nguyen, H.L. and Adelman, S.A., J. Chem. Phys., 1984, vol. 81, no. 10, p. 4564.

    Article  CAS  Google Scholar 

  27. Chandrasekhar, J., Spellmeyer, W.L., and Jorgensen, M.L., J. Am. Chem. Soc., 1984, vol. 106, no. 4, p. 903.

    Article  CAS  Google Scholar 

  28. Clementi, E. and Barsotti, R., Chem. Phys. Lett., 1978, vol. 59, no. 1, p. 21.

    Article  CAS  Google Scholar 

  29. Mezei, M. and Beveridge, D.L., J. Chem. Phys., 1981, vol. 74, no. 12, p. 6902.

    Article  CAS  Google Scholar 

  30. Marchese, F.T. and Beveridge, D.L., J. Am. Chem. Soc., 1984, vol. 106, no. 13, p. 3713.

    Article  CAS  Google Scholar 

  31. Hirata, F. and Rossky, P.J., Chem. Phys. Lett., 1981, vol. 83, no. 2, p. 329.

    Article  CAS  Google Scholar 

  32. Hirata, F., Rossky, P.J., and Pettitt, B.M., J. Chem. Phys., 1983, vol. 78, no. 6, p. 4133.

    Article  CAS  Google Scholar 

  33. Chandler, D. and Andersen, H.C., J. Chem. Phys., 1972, vol. 57, no. 5, p. 1930.

    Article  CAS  Google Scholar 

  34. Monson, P.A. and Morris, G.P., Adv. Chem. Phys., New York: Wiley, 1990, vol. 77, p. 451.

    Book  Google Scholar 

  35. Hirata, F., Molecular Theory of Solvation, Dordrecht: Kluwer Academic Publishers, 2003.

    Google Scholar 

  36. Golovko, M.F., Kiev, Preprint ITF-84-187R., 1984.

  37. Holovko, M.F. and Kalyuzhnyi, Yu.V., Mol. Phys., 1989, vol. 68, no. 6, p. 1239.

    Article  Google Scholar 

  38. Kalyuzhnyi, Yu.V., Fedotova, M.V., and Golovko, M.F., L’vov: Preprint Inst. Fiziki Kondensir. Sistem, IFKS no. 93-27P, 1994.

  39. Fedorov, M.V. and Kornyshev, A.A., Mol. Phys., 2007, vol. 105, no. 1, p. 1.

    Article  CAS  Google Scholar 

  40. Chuev, G.N., Fedorov, M.V., Chiodo, S., Russo, N., and Sicilia, E., J. Comput. Chem., 2008, vol. 29, no. 14, p. 2406.

    Article  CAS  Google Scholar 

  41. Berendsen, H.J.C., Postma, J.P.M., van Gunsteren, W.F., and Hermans, W.F., Jerusalem Symp. on Quantum Chem. and Biochem., Dordrecht: Reidel, 1981, p. 331.

    Google Scholar 

  42. Pettitt, B.M. and Rossky, P.J., J. Chem. Phys., 1982, vol. 77, no. 3, p. 1451.

    Article  CAS  Google Scholar 

  43. Dang, L.X., J. Am. Chem. Soc., 1995, vol. 117, no. 26, p. 6954.

    Article  CAS  Google Scholar 

  44. Pettitt, B.M. and Rossky, P.J., J. Chem. Phys., 1986, vol. 84, no. 10, p. 5836.

    Article  CAS  Google Scholar 

  45. Fumi, F.G., Tosi, M.P., J. Phys. Chem. Solids, 1964, vol. 25, no. 1, p. 45.

    Article  Google Scholar 

  46. Labic, S., Malijevsky, A., and Vonka, P., Mol. Phys., 1985, vol. 56, no. 3, p. 709.

    Article  Google Scholar 

  47. Tamas, J., Acta Chim. Acad. Sci. Hung., 1964, vol. 40, p. 117.

    CAS  Google Scholar 

  48. Mishchenko, K.P. and Poltoratskii, G.M., Termodinamika i stroenie vodnykh i nevodnykh rastvorov elektrolitov (Thermodynamics and Structure of Aqueous and Non-Aqueous Electrolyte Solutions), Leningrad: Khimiya, 1976.

    Google Scholar 

  49. Ionnaya sol’vatatsiya (Ionic solvation), Krestov, G.A., Ed., Moscow: Nauka, 1987.

    Google Scholar 

  50. http://www.unipress.waw.pl/fityk/.

  51. Chizhik, V.I., Mikhailov, V.I., and Pak Chzhon Su, Teor. Eksp. Khim., 1986, vol. 22, no. 4, p. 502.

    Google Scholar 

  52. Frost, R.L. and James, D.W., J. Chem. Soc., Faraday Trans. 1, 1982, vol. 78, no. 11, p. 3235.

    Article  CAS  Google Scholar 

  53. Moll, H., Denecke, M.A., Jalilehvand, F., Sandstrom, M., and Grenthe, I., Inorg. Chem., 1999, vol. 38, no. 8, p. 1795.

    Article  CAS  Google Scholar 

  54. Lyashchenko, A.K. and Zasetskii, A.Yu., Zh. Strukt. Khim., 1998, vol. 39, no. 5, p. 851.

    Google Scholar 

  55. Lyashchenko, A.K. and Zasetsky, A.Yu., J. Mol. Liq., 1998, vol. 77, nos. 1–2, p. 61.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Fedotova.

Additional information

Original Russian Text © M.V. Fedotova, 2011, published in Zhurnal Obshchei Khimii, 2011, Vol. 81, No. 1, pp. 17–25.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fedotova, M.V. Structural characteristics of the rubidium fluoride aqueous solutions under standard conditions. Russ J Gen Chem 81, 15–23 (2011). https://doi.org/10.1134/S1070363211010038

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070363211010038

Keywords

Navigation