Log in

Determination of the Effective Electrical Conductivity of a Fluid–Saturated Core from Computed Tomography Data

  • Published:
Izvestiya, Physics of the Solid Earth Aims and scope Submit manuscript

Abstract—This paper proposes a technique for determining the effective specific electrical conductivity of rock samples when their digital models are used. A modified algorithm for reconstructing the internal structure of the sample from the core’s nondestructive imaging data can be used to construct a relevant discrete model that approximates the pore space with a high degree of accuracy. Unlike existing approaches, the reconstructed discrete geometric model of a heterogeneous medium sample is hierarchical and oriented to the application of parallel computational schemes of multiscale finite element methods for a forward mathematical simulation of electromagnetic processes. The paper presents the results of solving the problem of determining the effective specific electrical conductivity of fluid–saturated rock samples and compares them with the data from laboratory experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Slicer Image Computing Platform. https://www.slicer.org. Cited January 16, 2022.

  2. Aarnes, J., Kippe, V., Lie, K.-A., and Rustad, A.B., Modelling of multiscale structures in flow simulations for petroleum reservoirs, Ch. in Geometric Modelling, Numerical Simulation, and Optimization: Applied Mathematics at SINTEF, Hasle, G., Lie, K.-A., and Quak, E., Eds., Berlin: Springer, 2007, pp. 307–360.

    Google Scholar 

  3. Bao, J.Q., Fathi, E., and Ameri, S., A coupled finite element method for the numerical simulation of hydraulic fracturing with a condensation technique, Eng. Fract. Mech., 2014, vol. 131, pp. 269–281.

    Article  Google Scholar 

  4. Borisov, V.E., Ivanov, A.V., Kritskii, B.V., Men’shov, I.S., and Savenkov, E.B, Numerical simulation of poroelasticity problems, Preprint of Keldysh Inst. of Appl. Math., Russ. Acad. Sci., Moscow, 2017, no. 81, p. 36.

  5. Brandt, A., Principles of systematic upscaling, Ch. 7 in Multiscale Methods: Bridging the Scales in Science and Engineering, Fish, J., Ed., Oxford: Oxford Univ. Press, 2010, pp. 193–215. https://doi.org/10.1093/acprof:oso/9780199233854.003.0007

  6. Butorin, A.V., Structure of productive clinoform horizon by seismic data, Geofizika, 2015, vol. 1, pp. 10–18.

    Google Scholar 

  7. Chusovitin, A.A., Timchuk, A.S., and Grachev, S.I., Study of geological and technological model of complex reservoirs of Samotlor field oil and gas deposits, Bull. PNRPU. Geol. Oil Gas Eng. Min., 2016, vol. 15, no. 20, pp. 246–260.

    Google Scholar 

  8. Cong, A., Liu, Y., Kumar, D., Cong, W., and Wang, G., Geometrical modeling using multiregional marching tetrahedral for bioluminescence tomography, SPIE Proc., 2005, vol. 5744 (Medical Imaging: Visualization, Image-Guided Procedures, and Display), pp. 756–764.

  9. Dong, H. and Blunt, M.J., Pore-network extraction from micro-computerized-tomography images, Phys. Rev. E, 2009, vol. 80, no. 3, part 2, Article ID 036307.

  10. Du, Q. and Wang, D., Recent progress in robust and quality Delaunay mesh generation, J. Comput. Appl. Math., 2006, vol. 195, nos. 1-2, pp. 8–23.

    Article  Google Scholar 

  11. Durmaz, S., A numerical study on the effective thermal conductivity of composite materials, Yüksek Lisans Tezi, Izmir: Dokuz Eylül Üniversitesi, 2004, p. 240.

    Google Scholar 

  12. Epov, M.I., Shurina, E.P., and Artem’ev, M.K., Numerical homogenization of electric characteristics of media with contrast small-scale inclusions, Dokl. Earth Sci., 2012, vol. 442, no. 1, pp. 97–99.

    Article  Google Scholar 

  13. GeoDict—The Digital Material Laboratory. https://www.math2market.com/. Cited January 16, 2022.

  14. Gibson, S.F.F., Constrained Elastic Surface Nets: Generating Smooth Models from Binary Segmented Data, Tech. Rep. TR99-24, Mitsubishi Electric Research Laboratories, Cambridge, MA, 1999, vol. 24.

  15. Hattori, G., Trevelyan, J., Augarde, Ch.E., Coombs, W.M., and Aplin, A.C., Numerical simulation of fracking in shale rocks: current state and future approaches, Arch. Comput. Methods Eng., 2017, vol. 24, no. 2, pp. 281–317.

    Article  Google Scholar 

  16. Hou, T. and Efendiev, Y., Multiscale Finite Element Methods: Theory and Applications, Antman, S.S., Marsden, J.E., and Sirovich, L., Eds., New York: Springer, 2009.

    Google Scholar 

  17. Jia, L., Ross, C.M., and Kovscek, A.R., A pore-network-modeling approach to predict petrophysical properties of diatomaceous reservoir rock, SPE Reservoir Eval. Eng., 2007, vol. 10, no. 6, pp. 597–608.

    Article  Google Scholar 

  18. Jiang, Y., Zhao, J., Li, Y., Jia, H., and Zhang, L., Extended finite element method for predicting productivity of multifractured horizontal wells, Math. Probl. Eng., 2014, vol. 2014, Article ID 810493.

    Article  Google Scholar 

  19. Jovanović, J.D. and Jovanović, M.L., Finite element modeling of the vertebra with geometry and material properties retrieved from CT-Scan Data, Facta Univ., Ser.: Mech. Eng., 2010, vol. 8, no. 1, pp. 19–26.

    Google Scholar 

  20. Ju, T., Losasso, F., Schaefer, S., and Warren, J., Dual contouring of hermite data, Proc. SIGGRAPH: 29th Annual Conf. on Computer Graphics and Interactive Techniques, San Antonio 2002, New York: Association for Computing Machinery, 2002, pp. 339–346.

  21. Khurshid, I. and Afgan, I., Geochemical investigation of electrical conductivity and electrical double layer-based wettability alteration during engineered water injection in carbonates, J. Pet. Sci. Eng., 2022, vol. 215, part A, Article ID 110627.

  22. Li, L., **a, Y., Huang, B., Zhang, L., Li, M., and Li, A., The behaviour of fracture growth in sedimentary rocks: a numerical study based on hydraulic fracturing processes, Energies, 2016, vol. 9, no. 3, Article ID 169.

    Article  Google Scholar 

  23. Li, C., Wang, D., and Kong, L., Mechanical response of the Middle Bakken rocks under triaxial compressive test and nanoindentation, Int. J. Rock Mech. Min. Sci., 2021, vol. 139, Article ID 104660.

    Article  Google Scholar 

  24. Liang, X. and Zhang, Y., An octree-based dual contouring method for triangular and tetrahedral mesh generation with guaranteed angle range, Eng. Comput., 2014, vol. 30, no. 2, pp. 211–222.

    Article  Google Scholar 

  25. Liu, J., Pereira, G.G., Liu, Q., and Regenauer-Lieb, K., Computational challenges in the analyses of petrophysics using microtomography and upscaling: a review, Comput. Geosci., 2016, vol. 89, pp. 107–117.

    Article  Google Scholar 

  26. Lorensen, W.E. and Cline, H.E., Marching cubes: A high resolution 3d surface construction algorithm, Proc. SIGGRAPH: 14th Annual Conf. on Computer Graphics and Interactive Techniques, Stone, M.C., Ed., New York: Association for Computing Machinery, 1987, vol. 21, no. 4, pp. 163–169.

  27. Materialise Mimics Overview. http://www.materialise.com/en/medical/software/mimics. Cited January 16, 2022.

  28. Schaefer, S., Ju, T., and Warren, J., Manifold dual contouring, IEEE Trans. Visualization Comput.Graphics, 2007, vol. 13, no. 3, pp. 610–619.

    Article  Google Scholar 

  29. Schindelin, J., Arganda-Carreras, I., Frise, E., Kayanig, V., Longair, M., Pietzsch, T., Preibisch, S., Ruedenet, C., Saalfeld, S., Schmid, B., Tinevez, J.-Y., White, D.-J., Hartenstein, V., Eliceiri, K., Tomancak, P., et al., Fiji: an open-source platform for biological-image analysis, Nat. Methods, 2012, vol. 9, no. 7, pp. 676–682.

    Article  Google Scholar 

  30. Schreiner, J., Scheidegger, C.E., and Silva, C.T., High-quality extraction of isosurfaces from regular and irregular grids, IEEE Trans. Visualization Comput. Graphics, 2006, vol. 12, no. 5, pp. 1205–1212.

    Article  Google Scholar 

  31. Shishlov, S.B. and Gubaeva, F.R., Structure and formation conditions of the Early Cretaceous productive formation BV–8 of the Povkhovskoye oil field (Western Siberia), Neftegazov. Geol. Teor. Prakt., 2012, vol. 7, no. 2, pp. 1–24.

    Google Scholar 

  32. Shurina, E.P., Epov, M.I., and Kutishcheva, A.Yu., Numerical simulation of the percolation threshold of the electric resistivity, J. Comput. Technol., 2017, vol. 22, no. 3, pp. 3–15.

    Google Scholar 

  33. Shurina, E.P., Dobrolyubova, D.V., and Shtan’ko, E.I., Special techniques for objects with complex inner structure based on a CT image sequence, Cloud Sci., 2018, vol. 5, no. 1, pp. 40–58.

    Google Scholar 

  34. Snarskii, A.A., Bezsudnov, I.V., and Sevryukov, V.A., Protsessy perenosa v makroskopicheski neuporyadochennykh sredakh: ot teorii srednego polya do perkolyatsii (Transport Processes in Macroscopically Disordered Media: from Mean Field Theory to Percolation), Punina, M.K., Ed., Moscow: LKI, 2007.

    Google Scholar 

  35. Ströter, D., Mueller-Roemer, J.S., Weber, D., and Fellner, D.W., Fast harmonic tetrahedral mesh optimization, Visual Comput., 2022, vol. 38, no. 9-10, pp. 3419–3433.

    Article  Google Scholar 

  36. Synopsys. Simpleware Software Solutions. https:// www.synopsys.com/simpleware.html. Cited January 16, 2022.

  37. Tabarovsky, L.A. and Epov, M.I., Method of Upscaling and Downscaling Geological and Petrophysical Models to Achieve Consistent Data Interpretation of Different Scales, US Patient US2021/0165125 A1, 2021.

    Google Scholar 

  38. Tang, D.G., Milliken, K.L., and Spikes, K.T., Machine learning for point counting and segmentation of arenite in thin section, Mar. Pet. Geol., 2020, vol. 120, Article ID 104518.

    Article  Google Scholar 

  39. ThermoFisher Scientific. Avizo for Materials Science. https://www.fei.com/software/avizo-for-materials-science. Cited January 16, 2022.

  40. Tuller, M., Kulkarni, R., and Fink, W., Segmentation of X-ray CT data of porous materials: A review of global and locally adaptive algorithms, Ch. 8 of Soil–Water–Root Processes: Advances in Tomography and Imaging, Anderson, S.H. and Hopmans, J.W., Eds., SSSA Special Publications, vol. 61, Madison: Soil Science Society of America, 2013, pp. 157–182.

  41. Vorob’ev, K.A., Vorob’ev, A.E., and Tcharo, Kh., Oil industry digitization: technology “digital” core, Vestn. Evraz. Nauki, 2018, vol.10, no. 3, Article ID 78NZVN318.

  42. Weinan, E. and Engquist, B., The heterogeneous multiscale methods, Commun. Math. Sci., 2003, vol. 1, no. 1, pp. 87–132.

    Article  Google Scholar 

  43. **ong, Q., Baychev, T.G., and Jivkov, A.P., Review of pore network modelling of porous media: Experimental characterisations, network constructions and applications to reactive transport, J. Contam. Hydrol., 2016, vol. 192, pp. 101–117.

    Article  Google Scholar 

  44. Xu, K., Wei, W., Chen, Y., Tian, H., Xu, S., and Cai, J., A pore network approach to study throat size effect on the permeability of reconstructed porous media, Water, 2022, vol. 14, no.1, Article ID 77.

    Article  Google Scholar 

  45. Yushkevich, P.A. and Gerig, G., ITK-SNAP: an intractive medical image segmentation tool to meet the need for expert-guided segmentation of complex medical images, IEEE Pulse, 2017, vol. 8, no. 4, pp. 54–57.

    Article  Google Scholar 

  46. Zhang, B. and Yoshino, T., Temperature-enhanced electrical conductivity anisotropy in partially molten peridotite under shear deformation, Earth Planet. Sci. Lett., 2020, vol. 530, Article ID 115922.

    Article  Google Scholar 

  47. Zhang, Y., Hughes, T.J.R., and Bajaj, Ch.L., An automatic 3D mesh generation method for domains with multiple materials, Comput. Methods Appl. Mech. Eng., 2010, vol. 199, no. 5–8, pp. 405–415.

    Article  Google Scholar 

  48. Zhang, T., **a, P., and Lu, F., 3D reconstruction of digital cores based on a model using generative adversarial networks and variational auto-encoders, J. Pet. Sci. Eng., 2021, vol. 207, Article ID 109151.

  49. Zhikov, V.V., Kozlov, S.M., and Oleinik, O.A., Usrednenie differentsial’nykh operatorov (Averaging of Differential Operators), Moscow: Fizmatlit, 1993.

  50. Zhou, J., Zhang, L., Braun, A., and Han, Z., Numerical modeling and investigation of fluid-driven fracture propagation in reservoirs based on a modified fluid-mechanically coupled model in two-dimensional particle flow code, Energies, 2016, vol. 9, no. 9, Article ID 699.

    Article  Google Scholar 

  51. Zhu, L., Zhang, C., Zhang, Ch., Zhou, X., Zhang, Z., Nie, X., Liu, W., and Zhu, B., Challenges and prospects of digital core-reconstruction research, Geofluids, 2019, vol. 2019, Article ID 7814180.

    Article  Google Scholar 

Download references

Funding

The algorithms for constructing discrete geometric analogs from the computed tomography data of the core and the forward and inverse numerical simulation procedures were implemented as part of project FWZZ–2022–0030.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. I. Markov or E. I. Shtan’ko.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Epov, M.I., Shurina, E.P., Dobrolyubova, D.V. et al. Determination of the Effective Electrical Conductivity of a Fluid–Saturated Core from Computed Tomography Data. Izv., Phys. Solid Earth 59, 672–681 (2023). https://doi.org/10.1134/S106935132305004X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106935132305004X

Keywords:

Navigation