Log in

Geoelectric Model of the Northwestern Caucasus: Three-Dimensional Inversion

  • Published:
Izvestiya, Physics of the Solid Earth Aims and scope Submit manuscript

Abstract—Interpretation of magnetotelluric observations made within the Northwestern Caucasus, by means of one-dimensional, two-dimensional inversion and three-dimensional mathematical modeling programs, has helped build testing and starting geoelectric models that are necessary to test and adapt the program of three-dimensional inversion of the impedance tensor components. The performed three-dimensional inversion of the experimental magnetotelluric data has significantly changed the parameters of conducting blocks within the folded structures of the region, identified at the previous stages of MT data interpretation. In the resulting three-dimensional geoelectric model, the position of low-resistance blocks correlates with: suture zones, deep faults, mud volcanoes, and domains characterized by an increased absorption of transverse and longitudinal seismic waves. The electrical resistivity of the most low-resistance anomalies is explained by the degree of their saturation with the water fraction of the fluid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

REFERENCES

  1. Atlas Severnogo Kavkaza: Tektonicheskaya karta Severnogo Kavkaza. Masshtab 1 : 1000000 (Atlas of North Caucasus Maps: The 1 : 1000000 Tectonic Map of the North Caucasus), Prutskii, N.I., Ed., Essentuki: North Caucasus Regional Geological Center of the Ministry of Natural Resources of Russia, 1998.

  2. Belyavskii, V.V., Geoelektricheskaya model’ tektonosfery Severo-Kavkazskogo regiona (Geoelectric Model of the Tectonosphere of the North Caucasus Region), Moscow: GERS, 2007.

  3. Belyavskii, V.V., Egorkin, A.V., Zolotov, E.E., Konovalov, Yu.F. et al., Deep Geological and Geophysical Studies by Seismic (Earth Converted Wave Method (ECWM)) and Electrical Exploration Methods (MT Sounding (MTS), Deep MT Sounding (DMTS), Audio-Frequency MT Sounding (AMTS)) on Yeisk-Stavropol-Neftekumsk-Caspian Sea (850 Line km) and Korf-Verkhnee Penzhino Regional Profiles (500 Line km). Analysis and Summary of Data from Deep Geophysical Surveys Conducted in the North Caucasus, Kamchatka and Southern Siberia, All-Russian Research Institute of Geophysical Exploration Methods, Funds of the Ministry of Natural Resources of the Russian Federation, 2006.

  4. Belyavskii, V.V. and Sukhoi, V.V., The method of audio-frequency magnetotelluric sounding, Izv., Phys. Solid Earth, 2004, vol. 40, no. 6, pp. 515–533.

    Google Scholar 

  5. Belyavskii, V.V., Egorkin, A.V., Solodilov, L.N., Rakitov, V.A., and Yakovlev, A.G., Some results of applying methods of natural electromagnetic and seismic fields in the North Caucasus, Izv., Phys. Solid Earth, 2007, vol. 43, no. 4, pp. 268–277.

    Article  Google Scholar 

  6. Caldwell, T.G., Bibby, H.M., and Brown, C., The magnetotelluric phase tensor, Geophys. J. Int., 2004, vol. 158, no. 2, pp. 457–469.

    Article  Google Scholar 

  7. Counil, J.L., le Mouel, J.L., and Menvielle, M., Associate and conjugate directions concepts in magnetotellurics, Ann. Geophys., 1986, vol. 4B, no. 2, pp. 115–130.

    Google Scholar 

  8. Druskin, V.L. and Knizhnerman, L.A., Spectral approach to solving three-dimensional Maxwell’s diffusion equations in the time and frequency domains, Radio Sci., 1994, vol. 29, no. 4, pp. 937–953.

    Article  Google Scholar 

  9. Eggers, D.E., An eigenstate formulation the magnetotelluric impedance tensor, Geophysics, 1982, vol. 47, no. 8, pp. 1204–1214.

    Article  Google Scholar 

  10. Ershov, V.V., Sobisevich, A.L., and Puzich, I.N., Deep underground structure of mud volcanoes in Taman according to experimental field studies and mathematical modeling, Geofiz. Issled., 2015, vol. 16, no. 2, pp. 69–76.

    Google Scholar 

  11. Fizicheskie svoistva gornylh porod i poleznykh iskopaemylh. Spravochnik geofizika (Physical Properties of Rocks and Mineral Resources. A Handbook of the Geophysicist), Dortman, N.B., Ed., Moscow: Nedra, 1984.

    Google Scholar 

  12. Ivanov, P.V. and Pushkarev, P.Yu., Three-dimensional inversion of the single-profile magnetotelluric data, Izv., Phys. Solid Earth, 2012, vol. 48, no. 11-12, pp. 871–876.

    Article  Google Scholar 

  13. Kiyan, D., Jones, A.G., and Vozar, J., The inability of magnetotelluric off-diagonal impedance tensor elements to sense oblique conductors in three-dimensional inversion, Geophys. J. Int., 2014, vol. 196, no. 3, pp. 1351–1364.

    Article  Google Scholar 

  14. Lavrushin, V.Yu., Podzemnye fluidy Bol’shogo Kavkaza i ego obramleniya, vyp. 599 (Underground Fluids of the Greater Caucasus and Its Framing, vol. 599), Polyak, B.G., Ed., Moscow: GEOS, 2012.

    Google Scholar 

  15. Miensopust, M.P., Queralt P., Jones, A.G., and the 3D MT modelers Collab., Magnetotelluric 3D inversion—review of two successful workshops on forward and inversion code testing and comparison, Geophys. J. Int., 2013, vol. 193, pp. 1216–1238.

    Article  Google Scholar 

  16. Moiseenko, U.I. and Smyslov, A.A., Temperatyra zemnukh nedrov (The Temperature of the Earth’s Interior), Leningrad: Nedra, 1986.

    Google Scholar 

  17. Rogozhin, E.A., Gorbatikov, A.V., Stepanova, M.Yu., Ovsyuchenko, A.N., Andreeva, N.V., and Kharazova, Yu.V., The structural framework and recent geodynamics of the Greater Caucasus Meganticlinorium in the light of new data on its deep structure, Geotectonics, 2015, vol. 49, no. 2, pp. 123–134.

    Article  Google Scholar 

  18. Rogozhin, E.A., Gorbatikov, A.V., Kharazova, Yu.V., Stepanova, M.Yu, Chen, J, Ovsyuchenko, A.N., Lar’kov, A.S., and Sysolin, A.I., Deep structure of the Anapa flexural-rupture zone, Western Caucasus, Geotectonics, 2019, vol. 53, no. 5, pp. 541–547.

    Article  Google Scholar 

  19. Shankland, T.J. and Waff, H.S., Partial melting and electrical conductivity anomalies in the upper mantle, J. Geophys. Res., 1977, vol. 82, no. 33, pp. 5409–5417.

    Article  Google Scholar 

  20. Shempelev, A.G., Western Caucasus from geophysical data, Otechestvennaya Geol., 2004, no. 2, pp. 69–75.

  21. Siripunvaraporn, W., Egbert, G.D., Lenbury, Y., and Uyeshima, M., Three-dimensional magnetotelluric inversion: data-space method, Phys. Earth Planet. Inter., 2005a, vol. 150, no. 1-3, pp. 3–14. https://doi.org/10.1016/J.pepi.2004.08.023

    Article  Google Scholar 

  22. Siripunvaraporn, W., Egbert, G.D., and Uyeshima, M., Interpretation of two-dimensional magnetotelluric profile data with three-dimensional inversion: synthetic examples, Geophys. J.Jnt., 2005b, vol. 160, no. 3, pp. 804–814. https://doi.org/10.1111/j.1365-246X.2005.02527.X

    Article  Google Scholar 

  23. Sobisevich, A.L., Laverov, N.I., Sobisevich, L.E., Mikadze, E.I., and Ovsyuchenko, A.N., Bashorin, V.N., Pronin, A.P., Gurbanov, A.G., and Shevchenko, A.V., Seismoaktivnye flyuidno-magmaticheskie sistemy Severnogo Kavkaza (Seismoactive Fluid Magmatic Systems of the North Caucasus), Laverov, N.P., Ed., Moscow: IFZ RAN, 2005.

    Google Scholar 

  24. Somin, M.L., Structure of axial zones in the Central Caucasus, Dokl. Earth Sci, 2000, vol. 375, no. 9, pp. 1371–1374.

    Google Scholar 

  25. Sovremennye metody izmereniya, obrabotki i interpritatsii elektomagnitnykh dannykh (Modern Methods of Measuring, Processing and Interpreting Electromagnetic Data), Spichak, V.V., Ed., Moscow: Librokom, 2009.

    Google Scholar 

  26. Stongii, V.V. and Stongii, G.A., Seismotectonic model of the Northwest Caucasus: geological-geophysical aspect, Izv., Phys. Solid Earth, 2019, vol. 55, no. 4, pp. 649–656.

    Article  Google Scholar 

  27. Vanyan, L.L., Elektromagnitnye zondirovaniya (Electromagnetic Depth Soundings), Moscow: Nauch. mir, 1997.

  28. Varentsov, I.M., A general approach to the magnetotelluric data inversion in a piecewise-continuous medium, Izv., Phys. Solid Earth, 2002, vol. 38, no. 11, pp. 913–934.

    Google Scholar 

  29. Zolotov, E.E., Kadurin, I.N., Kadurina, L.S., Nedyad’ko, V.V., Rakitov, V.A., Rogozhin, E.A., and Lyashenko, L.L., Novye dannye o glubinnom stroenii Zemnoy kory i seismichnosti Zapadnogo Kavkaza (New Data on the Depth Structure of the Earth’s Crust and Seismicity of the Western Caucasus), in Geofizika XXI stoletiya (Geophysics in the XXI Century), Solodilova, L.N., Ed., Moscow: Nauch. mir, 2001, pp. 85–89.

Download references

ACKNOWLEDGMENTS

I am grateful to the organizations that provided the primary electrical survey material, EMI Center JSC and Severo-Zapad LLC. The work used and demonstrates the seismic constructions of the ECWM and DSS methods obtained in 1990–2004 by the GEON Center under the guidance of L.N. Solodilov.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Belyavskii.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belyavskii, V.V. Geoelectric Model of the Northwestern Caucasus: Three-Dimensional Inversion. Izv., Phys. Solid Earth 59, 175–189 (2023). https://doi.org/10.1134/S1069351322060027

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1069351322060027

Keywords:

Navigation