Log in

Seismic, Atmospheric-Wave, Electrical, and Magnetic Effects of Powerful Atmospheric Fronts

  • Published:
Izvestiya, Physics of the Solid Earth Aims and scope Submit manuscript

Abstract—Disturbances of seismic noise, magnetic field, electrical characteristics of the surface atmosphere and microbaric variations caused by the passage of cold atmospheric fronts of the 2nd kind are discussed. A new approach to a complex prognostic sign of strong atmospheric fronts, potentially dangerous by their effects such as hurricanes, squalls and severe thunderstorms, based on the analysis of joint variations of the electric field and vertical current of the surface atmosphere, magnetic field and micropulsations of atmospheric pressure in the period preceding the onset of the most intense manifestations of these phenomena, is proposed. The data obtained can contribute to improving the reliability of the short-term forecast of dangerous atmospheric phenomena.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.

Similar content being viewed by others

Notes

  1. The observatory is ~85 km south of Moscow.

  2. During continuous monitoring, INEP instances are changed at regular intervals in order to keep work surfaces clean.

  3. Another possible mechanism to be considered in the generation of disturbances of the geomagnetic field is the electrodynamic effect during movement of electrically charged clouds and precipitation (Chekryzhov et al., 2019).

  4. The detailed scaled-up figure shows the stages of the formation of a thunderstorm cell.

REFERENCES

  1. Adushkin, V.V. and Spivak, A.A., Fizicheskiye polya v pripoverkhnostnoy geofizike (Physical Fields in Near-Surface Geophysics), Moscow: GEOS, 2014.

  2. Adushkin, V.V. and Spivak, A.A., Problems of the interaction of geospheres and physical fields in near-surface geophysics, Izv., Phys. Solid Earth, 2019, vol. 55, no.1, pp. 1–11.

    Article  Google Scholar 

  3. Adushkin, V.V. and Spivak, A.A., The impact of extreme natural events on geophysical fields in the environment, Izv., Phys. Solid Earth, 2021, vol. 57, no. 5, pp. 583–592.

    Article  Google Scholar 

  4. Adushkin, V.V., Loktev, D.N., Spivak, A.A., The effect of baric disturbances in the atmosphere on microseismic processes in the crust, Izv., Phys. Solid Earth, 2008, vol. 44, no. 6, pp. 510–517.

    Article  Google Scholar 

  5. Adushkin, V.V., Soloviev, S.P., and Spivak, A.A., Elektricheskie polya tekhnogennykh i prirodnykh protsessov (Electrical Fields of Man-Made and Natural Processes), Moscow: GEOS, 2018.

  6. Adushkin, V.V., Rybnov, Yu.S., and Spivak, A.A., Infrazvuk v atmosfere (Infrasound in the Atmosphere), Moscow: TORUS PRESS, 2020.

  7. Alekseeva, A.A., Forecasting hurricane winds in extratropical cyclones in Russia, Russ. Meteorol. Hydrol., 2017, vol. 42, no. 1, pp. 1–8.

    Article  Google Scholar 

  8. AR6 Climate Change 2021: The Physical Science Basis, IPCC Sixth Assessment Report, Geneve, 2021.

  9. Atmosfera, Spravochnik (Atmosphere. Handbook), Sedunov, Yu.S., Avdyushin, S.I., Borisenkov, E.P., Volkovi-tski, O.A., Petrov, N.N., Reitenbakh, R.G., Smirnov, V.I., Chernikov, A.A., Eds., Leningrad: Gidrometeoizdat, 1991.

    Google Scholar 

  10. Baryshev, V.I., Vaag, L.L., Gavrilov, B.G., and Poletaev, A.S., The surface vertical atmospheric current sensor, in Problemy vzaimodeistvuyuschikh geosfer (Problems of Interacting Geospheres), Moscow: GEOS, 2009, pp. 358–364.

  11. Chekryzhov, V.M., Svirkunov, P.N., and Kozlov, S.V., The influence of cyclonic activity on the geomagnetic field disturbance, Geomagn. Aeron., 2019, vol. 59, no. 1, pp. 53–61.

    Article  Google Scholar 

  12. Danilov, S.D. and Svertilov, A.I., Internal gravity waves generated by the passage of thunderstorms, Izv. Akad. Nauk SSSR, Fiz. Atmos. Okeana, 1991, vol. 27, no. 3, pp. 234–241.

    Google Scholar 

  13. Fedorenko, Yu.P., Excitation of ground-level geomagnetic pulsations PC5 by acoustic gravity waves, Kosmichna Nauka Tekhnol., 2017, vol. 23, no. 3, pp. 11–37.

    Article  Google Scholar 

  14. Gokhberg, M.B. and Shalimov, S.L., Vozdeistvie zemletryasenii i vzryvov na ionosferu (The Influence of the Earthquakes and Explosions on the Ionosphere), Gliko, A.O., Ed., Moscow: Nauka, 2008.

    Google Scholar 

  15. Grachev, A.I., Danilov, S.D., Kulichkov, S.N., and Svertilov, A.I., Main characteristics of internal gravity waves from convective storms in the lower atmosphere, Izv., Atmos. Ocean. Phys., 1995, vol. 30, no. 6, pp. 725–733.

    Google Scholar 

  16. Gubenko, I.M. and Rubinstein, K.G., Thunderstorm activity forecasting based on the model of cumulonimbus cloud electrification, Russ. Meteorol. Hydrol., 2017, vol. 42, no. 2, pp. 77–87.

    Article  Google Scholar 

  17. Hatton, L., Worthington, M.H., and Makin, J., Seismic Data Processing: Theory and Practice, Oxford: Blackwell, 1986.

    Google Scholar 

  18. Hines, C.O., Internal atmospheric gravity waves at ionospheric heights, Can. J. Phys., 1960, vol. 38, no. 11, pp.1441–1481.

    Article  Google Scholar 

  19. Kashkin, V.B., Internal gravity waves in the troposphere, Atmos. Oceanic Opt., 2014, vol. 27, no. 1, pp. 1–9.

    Article  Google Scholar 

  20. Kulichkov, S.N., Tsybulskaya, N.D., Chunchuzov, I.P., Gordin, V.A., Bykov, F.L., Chulichkov, A.I., Perepelkin, V.G., Bush, G.A., and Golikova, E.V., Studying internal gravity waves generated by atmospheric fronts over the Moscow region, Izv., Atmos. Oceanic Phys., 2017, vol. 53, no. 4, pp. 402–412.

    Article  Google Scholar 

  21. Kulichkov, S.N., Chunchuzov, I.P., Popov, O.E., Perepelkin, V.G., Golikova, E.V., Bush, G.A., Repina, I.A., Tsybulskaya, N.D., and Gorchakov, G.I., Internal gravity and infrasound waves during the hurricane of May 29, 2017, in Moscow, Izv., Atmos. Oceanic Phys., 2019, vol. 55, no. 2, pp. 167–177.

    Article  Google Scholar 

  22. Kurdyaeva, Yu.A., Kulichkov, S.N., Kshevetskii, S.P., Borchevkina, O.P, and Golikova, E.V., Vertical propagation of acoustic-gravity waves from atmospheric fronts into the upper atmosphere, Izv., Atmos. Oceanic Phys., 2019, vol. 55, no. 4, pp. 303–311.

    Article  Google Scholar 

  23. Kuznetsov, V.V., Cherneva, N.V., and Druzhin, G.I., Influence of cyclones on the atmospheric electric field of Kamchatka, Dokl. Earth Sci., 2007, vol. 412, no. 1, pp. 147–150.

    Article  Google Scholar 

  24. Loktev, D.N., Spivak, A.A., Variations in the high-frequency component of a microseismic background during baric perturbations in the atmosphere, Dokl. Earth Sci., 2008, vol. 418, no. 1, pp. 136–139.

    Article  Google Scholar 

  25. Müller, T., Zürn, W., Observations of gravity change during the passage of cold fronts, J. Geophys., 1983, vol. 53, no. 1, pp. 155–162.

    Google Scholar 

  26. Pkhalagov, Yu.A., Ippolitov, I.I., Nagorsky, P.M., Odintsov, S.L., Panchenko, M.V., Smirnov, S.V., and Uzhegov, V.N., The correlation between abnormal atmospheric conditions and the electric field variability, Izv., Akad. Nauk, Fiz. Atmos. Okeana, 2009, vol. 22, no. 1, pp. 25–30.

    Google Scholar 

  27. Romanova, N.N. and Yakushkin, I.G., Internal gravity waves in the lower atmosphere and sources of their generation, Izv. Akad. Nauk, Fiz. Atmos. Okeana, 1995, vol. 31, no. 2, pp. 163–186.

    Google Scholar 

  28. Shalimov, S.L., Rozhnoy, A.A., Solovieva, M.S., and Olshanskaya, Ye.V., Impact of earthquakes and tsunamis on the ionosphere, Izv., Phys. Solid Earth, 2019, vol. 55, no. 1, pp. 168–181.

    Article  Google Scholar 

  29. Skorokhod, T.V. and Lizunov, G.V., Localized packets of acoustic-gravity waves in the ionosphere, Geomagn. Aeron., 2012, vol. 52, no. 1, pp. 88–93.

    Article  Google Scholar 

  30. Spivak, A.A. and Riabova, S.A., Geophysical effects of strong atmospheric fronts, Dokl. Earth Sci., 2021, vol. 501, no. 1, pp. S22–S26.

    Article  Google Scholar 

  31. Spivak, A.A., Rybnov, Yu.S., Kharlamov, V.A., Variations in geophysical fields during hurricanes and squalls, Dokl. Earth Sci., 2018a, vol. 480, no. 2, pp. 788–791.

    Article  Google Scholar 

  32. Spivak, A.A., Rybnov, Yu.S., Soloviev, S.P., Kharlamov, V.A., Acoustic and electric precursors of strong thunderstorm events under megalopolis conditions, Izv., Atmos. Ocean. Phys., 2018b, vol. 54, no. 7, pp. 112–118.

    Article  Google Scholar 

  33. Spivak, A.A., Rybnov, Yu.S., Soloviev, S.P., Kharlamov, V.A., and Soloviev, A.V., Acoustic and electric field variations during strong frontal disturbances propagation, Proc. SPIE 10833, 24th Int. Symp. on Atmospheric and Ocean Optics: Atmospheric Physics, Matvienko, G.G. and Romanovskii, O.A., Eds., Tomsk, 2018. https://doi.org/10.1117/12.2502330.

  34. Spivak, A.A., Rybnov, Yu.S., Riabova, S.A., Soloviev, S.P., and Kharlamov, V.A., Prognostic signs of dangerous atmospheric phenomena in geophysical fields, in Triggernye effect v geosistemakh (Trigger Effects in Geosystems), Adushkin, V.V., Kocharyan, G.G., Eds., Moscow, 2019, Moscow: TORUS, 2019, pp. 448–454.

  35. Voshchan, O.N. and Spivak, A.A., Variations of the electric field in the surface atmosphere as a result of the passage of cold atmospheric fronts, in Dinamicheskiye protsessy v geospherakh (Dynamic Processes in Geospheres), vol. 9, Moscow: GEOS, 2017, pp. 79–87.

Download references

Funding

The studies were carried out as part of State Order no. 1220329000185–5 “Manifestation of natural and man-made processes in geophysical fields.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Spivak.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Spivak, A.A., Ovtchinnikov, V.M., Rybnov, Y.S. et al. Seismic, Atmospheric-Wave, Electrical, and Magnetic Effects of Powerful Atmospheric Fronts. Izv., Phys. Solid Earth 58, 493–506 (2022). https://doi.org/10.1134/S1069351322040115

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1069351322040115

Keywords:

Navigation