Log in

Electron Beam Loss Monitor of Areal Accelerator Based on Pin-Photodiodes

  • Published:
Journal of Contemporary Physics (Armenian Academy of Sciences) Aims and scope

Abstract

A prototype PIN-photodiode-based electron system for flux measurement of the AREAL accelerator electron beam (energy up to 5 MeV) was developed and tested. The system can be eventually used to measure beam losses from the vacuum chamber of the SASE100 undulator, which is intended for the generation of radiation in the terahertz range and will be installed in the AREAL accelerator tract during its modernization. The method of using the PIN-photodiodes as a beam loss monitor is based on the effect of electron–hole pairs formation when ionizing particles pass through the photodiode barrier layer. Calculations of the interaction of electrons with the substance of the barrier layer are performed using the PCLab program. The experiments carried out on the accelerator electron beam showed that the developed system can effectively register the electron fluxes of both the main beam of the AREAL accelerator and its dark current.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

REFERENCES

  1. Tsakanov, V.M., Amatuni, G.A., et al., NIM A, 2016, vol. 829, p. 284.

    Article  ADS  Google Scholar 

  2. Gumprecht, L., Eidam, J., et al., Status of the Undulator System for the VUV–FEL Phase II. Annual Report, Desy, Hamburg, 2003, p. 11076.

  3. Henschel, H., Korfer, M., Kuhnhenn, J., Weinand, U., and Wulf, F., NIM A, 2004, vol. 526, p. 537.

    Article  ADS  Google Scholar 

  4. Wittenburg, K., Proceedings of the 2018 CERN–Accelerator–School course on Beam Instrumentation, (Tuusula, Finland, 2018), pp. 397–435.

  5. Wittenburg, K., AIP CP, 2000, vol. 546, p. 3.

    ADS  Google Scholar 

  6. Wittenburg, K., DESY, Beam Loss Monitors, CAS Beam Instrumentation, (Hamburg, Germany, 2018), pp. 35,36.

  7. Bialowons. W., Ridoutt, F., and Wittenburg, K., Electron Beam Loss Monitors for HERA, EPAC 27, London, 1994. p. 1628.

  8. Palni, P., Hoeferkamp, M., Taylor, A., Vora, S., McDuff, H., Gua, Q., and Seidel, S., NIM A, 2014, vol. 735, p. 213.

    Article  ADS  Google Scholar 

  9. Srivastava, S., Henry, R., and Topka, A., JIES, 2007, vol. 1, no. 1, p. 47.

    Google Scholar 

  10. http://usa.hamamatsu.com/cmpdetectors/X-ray.htm

  11. Ban, S., Hirayama, H., Namito, Y., et al. NST, 1994, vol. 31(2), p. 163.

    ADS  Google Scholar 

  12. Espinoza, A., Development of a Silicon Detector for Dose Imaging and Measurement, University of Wollongong, 2010.

    Google Scholar 

  13. Murata, C., Fernandes, D., Lavínia, N., Caldas, L., Pires, S., and Medeiros, R., RPC, 2014, vol. 95, p. 101.

    Google Scholar 

  14. Shapiro, S.L. and Dunwoodie, W., NIM A, 1989, vol. 275, p. 580.

    Article  ADS  Google Scholar 

  15. Jiménez, F., Test Procedure for PIN Diode Radiation Detectors, ININ, México, MRNI-508, 2008, p. 1.

    Google Scholar 

  16. Hoeferkamp, M., Grummer, A., Rajen, I., and Seidel, S., NIM A, 2018, vol. 890, p. 108.

    Article  ADS  Google Scholar 

  17. Matsuoka, K., Ichikawa, A., Kubo, H., et al., NIM A, 2010, vol. 624, p. 591.

    Article  ADS  Google Scholar 

  18. Knyazheva, G., Khlebnikov, S., et al., NIM B, 2006, vol. 248, p. 7.

    Article  ADS  Google Scholar 

  19. Mesquita, C., Filho, T., and Hamada, M., IEEE TNS, 2003, vol. 50(4), p. 899.

    Google Scholar 

  20. Arutunian, S.G., Badalyan, S.A., Chung, M., Lazareva, E.G., Margaryan, A.V., and Harutyunyan, G.S., RSI, 2019, vol. 90, p. 073302.

    Google Scholar 

  21. Arutunian, S.G., Margaryan, A.V., Harutyunyan, G.S., Lazareva, E.G., Darpasyan, A.T., Gyulamiryan, D.S., Chung, M., and Kwak, D., RSI, 2021, vol. 92, p. 033303.

    Google Scholar 

  22. Lazareva, E.G., J. Contemp. Phys., 2018, vol. 53(2), p. 136.

    Article  Google Scholar 

  23. Tanabashi, M., et al., Phys. Rev. D, 2018, vol. 98, p. 030001.

    Article  ADS  Google Scholar 

  24. Khachatryan, V., Beam–Matter Interaction and Radiation Dose Measurements, Armenia, Candle SRI Yerevan, 2019.

    Google Scholar 

  25. Bespalov, V.I., Computer laboratory KL PCLab, Tomsk: Ed. TPU, 2018 [in Russian].

  26. Bespalov V.I., Lectures on Radiation Protection, Tomsk: TPU Publishing House, 2017 [in Russian].

  27. https://www.scribd.com/document/169316125/si-pd-circuit-e.

  28. Karki, J., Voltage Feedback Vs Current Feedback Op Amps Application Report, TI SLVA051, 1998.

Download references

ACKNOWLEDGMENTS

The authors are grateful to B.A. Grigoryan for posing the problem and for great attention to the work, as well as to the staff of the AREAL accelerator for their help in carrying out the experiments.

Funding

The Science Committee of the Republic of Armenia, within the framework of Scientific Projects 20APP-2 G 001 and 21T-2 G 079 financially supported the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. G. Lazareva.

Additional information

Translated by V. Musakhanyan

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arutyunyan, S.G., Margaryan, A.V., Lazareva, E.G. et al. Electron Beam Loss Monitor of Areal Accelerator Based on Pin-Photodiodes. J. Contemp. Phys. 58, 14–23 (2023). https://doi.org/10.1134/S1068337223010061

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1068337223010061

Keywords:

Navigation