Log in

State and Prospects of Improving the Methods of Production and Use of Bacterial Cellulose (A Review)

  • Published:
Russian Journal of Bioorganic Chemistry Aims and scope Submit manuscript

Abstract

No other material in the world around us can equal bacterial cellulose in terms of the application scope. This is a kind of unique material that gained popularity in the 20th century and provided an excellent target of scientific inquiry. Its production and practical application in various areas of human activity are currently of much importance. Also, a broad range of research into the basic principles of bacterial cellulose production revealed many promising applications for food industry byproducts as energy sources for its growth, which makes this material more environmentally friendly than its plant-derived analog. Despite rich research and production history, bacterial cellulose is still considered to be a not fully studied material. This allows researchers to identify new energy sources for the growth of bacterial cellulose, to improve its quality, and to increase its quantity both on laboratory and industrial scales, and also to expand the application of bacterial cellulose to areas where, it would seem, it does not belong. In the modern scientific world, bacterial cellulose holds much promise as a matter for scientific inquiry and further technological applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

Similar content being viewed by others

DATA AVAILABILITY

The data that support the findings of this study are available from the corresponding author upon reasonable request.

REFERENCES

  1. Aleshina, L.A., Glazkova, S.V., Lugovskaya, L.A., Podoinikova, M.V., Fofanov, A.D., and Silina, E.V., Khim. Rast. Syr’ya, 2001, no. 1, pp. 5–36.

    Google Scholar 

  2. Mautner, A., Polym. Int., 2020, vol. 69, pр. 741–751.

  3. Gregory, D.A., Tripathi, L., Fricker, A.T.R., Asare, E., Orlando, I., Raghavendran, V., and Roy, I., Mater. Sci. Eng.: R: Rep., 2021, vol. 145, pp. 159–186.

    Article  Google Scholar 

  4. Florea, M., Hagemann, H., Santosa, G., Proc. Natl. Acad. Sci. USA, 2016, vol. 113 (24), pp. E3431–E3440. https://doi.org/10.1073/pnas.1522985113

  5. Tanpichai, S., Witayakran, S., Wootthikanokkhan, J., Srimarut, Y., Woraprayote, W., and Malila, Y., Int. J. Biol. Macromol., 2020, vol. 155, pр. 1510–1519.

  6. Grunin, L.Yu., Grunin, Yu.B., Nikol’skaya, E.A., and Talantsev, V.I., Vysokomol. Soedin., Ser. A, 2012, vol. 54, no. 3, pp. 397–405.

    Google Scholar 

  7. Ioelovich, M., J. Sci. Israel Technol. Advant., 2017, vol. 19, no. 4, pp. 37–44.

    Google Scholar 

  8. Fernandes, I.A.A., Pedro, A.C., Ribeiro, V.R., Bortolini, D.G., Ozaki, M.S.C., Maciel, G.M., and Haminiuk, C.W.I., Int. J. Biol. Macromol., 2020, vol. 164, pp. 2598–2611.

    Article  CAS  PubMed  Google Scholar 

  9. Gallegos, A.M.A., Carrera, S.H., Parra, R., Keshavarz, T., and Iqbal, H.M.N., Bioresources, 2016, vol. 11, pp. 5641– 5655.

    Article  CAS  Google Scholar 

  10. Sukara, E. and Meliawati, R., J. Selulosa, 2014, vol. 4, no. 1, pp. 7–16.

    Google Scholar 

  11. Okiyama, A., Motoki, M., and Yamanaka, S., Food Hydrocoll., 1992, vol. 6, pp. 479–487.

    Article  CAS  Google Scholar 

  12. Fan, M.H., Biotechnology of bacterial cellulose using the producer strain of Gluconaceto-Bacter Hansenii GH-1/2008, Cand. Sci. (Biol.) Dissertation, Moscow, Moscow State Univ., 2013.

  13. Ul-Islam, M., Khan, T., Khattak, W.A., and Park, J.K., Cellulose, 2013, vol. 20, pp. 589–596.

    Article  CAS  Google Scholar 

  14. Zhong, C., Front. Bioeng. Biotechnol., 2020, vol. 8, p. 605374. https://doi.org/10.3389/fbioe.2020.605374

    Article  PubMed  PubMed Central  Google Scholar 

  15. Cacicedo, M., Islan, G.A., Leon, I., and Alvarez, V.A., Colloids Surf., B: Biointerfaces, 2018, vol. 170, pp. 596–608. https://doi.org/10.1016/j.colsurfb.2018.06.056

    Article  CAS  PubMed  Google Scholar 

  16. Weyell, P., Beekmann, U., Kuepper, C., Dederichs, M., Thamm, J., Fischer, D., and Kralisch, D., Carbohydr. Polym., 2018, vol. 207, pp. 1–10. https://doi.org/10.1016/j.carbpol.2018.11.061

    Article  CAS  PubMed  Google Scholar 

  17. Bianchet, R.T., Vieira Cubas, A.L., Machado, M.M., and Siegel, E.H., Biotechnol. Rep., 2020, vol. 27, p. e00502

  18. Al-Dulaimi Salman Dawood Salman, Self-Healing concretes modified with a microbiological additive, Cand. Sci. (Tech.) Dissertation, Moscow, Russ. Univ. of Transport, 2019.

  19. Erofeev, V.T., Al-Dulaimi Salman Dawood Salman, and Smirnov, V.F., Transport. Sooruzh., 2018, vol. 5, no. 4, pp. 1–13.

    Google Scholar 

  20. Sanchez, F. and Sobolev, K., Constr. Build. Mater., 2010, vol. 24, pp. 2060–2071.

    Article  Google Scholar 

  21. Balea, A., Fuente, E., Blanco, A., and Negro, C., Polymers, 2019, vol. 11, pp. 518–550.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Mohammadkazemi, F., Doosthoseini, K., Ganjian, E., and Azin, M., Constr. Build. Mater., 2015, pp. 958–964.

  23. Lee, K.-Y., Ho, K.K.C., Schlufter, K., and Bismarck, A., Compos. Sci. Technol., 2012, vol. 72, pp. 1479–1486.

    Article  CAS  Google Scholar 

  24. Peters, S.J., Rushing, T.S., Landis, E.N., and Cummins, T.K., Transp. Res. Rec. J. Transp. Res. Board, 2010, pp. 25–28.

  25. Bazhenov, Yu.M., Erofeev, V.T., and Al-Dulaimi Salman Dawood Salman, Russ. Inzh., 2018, no. 4, pp. 46–48.

    Google Scholar 

  26. Muhamad, I.I., Muhamad, S.N.H., Salehudin, M.H., Zahan, K.A., Tong, W.Y., and Pa’e, N., Mater. Today Proc., 2020, vol. 3, pp. 89–95.

    Article  Google Scholar 

  27. In Search of Plastic: How Greenpeace in Russia and People across the Country Studied Plastic Waste on the Shores of Seas, Rivers, and Lakes, Moscow, 2020.

  28. Schmidt-Traub, G., Obersteiner, M., and Mosnier, A., Nature, 2019, pp. 181–183.

  29. Zheng, J. and Suh, S., Nat. Clim. Change, 2019, vol. 9, pp. 374–378.

    Article  Google Scholar 

  30. Glazkov, S.V., Koptsev, S.V., Lesnikova, N.A., Bogdanova, V.V., and Volodarskaya, T.K., Ovoshchi Ross., 2018, no. 5, pp. 84–89.

    Article  Google Scholar 

  31. Jung, S., Cui, Y., Barnes, M., Satam, C., Adv. Mater., 2020, vol. 32, p. 1908291.

    Article  CAS  Google Scholar 

  32. Jafarzadeh, S., Nafchi, A.M., Salehabadi, A., and Oladzad-Abbasabadi, N., Adv. Colloid Interface Sci., 2021, vol. 291, p. 102405. https://doi.org/10.1016/j.cis.2021.102405

    Article  CAS  PubMed  Google Scholar 

  33. Stroescu, M., Isopencu, G., Busuioc, C., and StoicaGuzun, A., in Cellulose-Based Superabsorbent Hydrogels, Polymers, and Polymeric Composites: A Reference Series, Mondal, M., Ed., Cham: Springer, 2019, pp. 1303–1338.

  34. Zahan, K.A., Azizul, N.M., Mustapha, M., Tong, W.Y., Abdul Rahman, M.S., and Sahuri, I.S., Mater. Today Proc., 2020, vol. 31, pp. 83–88.

    Article  CAS  Google Scholar 

  35. Fabra, M.J., López-Rubio, A., Ambrosio-Martín, J., and Lagaron, J.M., Food Hydrocoll., 2016, vol. 61, pp. 261–268.

    Article  CAS  Google Scholar 

  36. Azeredo, H., Barud, H., Farinas, C., Vasconcellos, V., and Claro, A., Front. Sustain. Food Syst., 2019, vol. 3, p. 00007. https://doi.org/10.3389/fsufs.2019.00007

    Article  Google Scholar 

  37. Salaria, M., Khiabania, M.S., Mokarrama, R.R., Ghanbarzadehab, B., and Kafilc, H.S., Food Hydrocolloids, 2018, vol. 84, pp. 414–423.

    Article  Google Scholar 

  38. Skiba, E.А., Gladysheva, E.K., Golubev, D.S., and Budaeva, V.V., Carbohydr. Polym., 2021, vol. 252, p. 117178. https://doi.org/10.1016/j.carbpol.2020.117178

    Article  CAS  PubMed  Google Scholar 

  39. Biodegradable Superabsorbent Materials Market Size, Share, and Trends Analysis Report by Product, 2016. https://www.gminsights.com/industry-analysis/biodegradable-superabsorbent-materials-market

  40. Ramli, R.A., Polym. Chem., 2019, vol. 10, no. 45, pр. 6073–6090.

  41. Doelker, E., Stud. Polym. Sci., 1990, vol. 8, pp. 125–145.

    Article  CAS  Google Scholar 

  42. Atykyan, N.A., Revin, V.V., Safonov, A.V., Karaseva, Ya.Yu., Proshin, I.M., and Shutova, V.V., Radiokhimiya, 2021, vol. 63, no. 5, pp. 476–483.

    Article  Google Scholar 

  43. Skočaj, M., Cellulose, 2019, vol. 26, pp. 6477–6488.

    Article  Google Scholar 

  44. Lavric, G., Medvescek, D., and Skocaj, M., TAPPI J., 2020, vol. 19, pp. 197–203. https://doi.org/10.32964/TJ19.4.197

    Article  CAS  Google Scholar 

  45. Vandamme, E.J., De Baets, S., Vanbaelen, A., Joris, K., and De Wulf, P., Polym. Degrad. Stab., 1998, vol. 59, pp. 93–99.

    Article  CAS  Google Scholar 

  46. Gomez, N., Santos, S.M., Carbajo, J.M., and Villar, J.C., Bioengineering, 2017, vol. 4, p. 93. https://doi.org/10.3390/bioengineering4040093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Sriplai, N., Sirima, P., Palaporn, D., Mongkolthanaruk, W., Eichhorn, S.J., and Pinitsoontorn, S., J. Mater. Chem. C, 2018, vol. 6, pp. 11427–11435.

    Article  CAS  Google Scholar 

  48. Gismatulina, Yu.A., Budaeva, V.V., Sitnikova, A.E., Bychin, N.V., Gladysheva, E.K., Shavyrkina, N.A., Mironova, G.F., and Sevast’yanova, Yu.V., Izv. Vyssh. Uchebn. Zaved., Prikl. Khim. Biotekhnol., 2021, vol. 11, no. 3, pp. 460–471.

    CAS  Google Scholar 

  49. Dhar, P., Pratto, B., Gonçalves Cruz, A.J., and Bankar, S., J. Cleaner Prod., 2019, p. 117859.

  50. Yang, Y., Liu, W., Huang, Q., Li, X., Ling, H., Ren, J., Sun, R., Zou, J., and Wang, X., ACS Sustain. Chem. Eng., 2020, vol. 8, pр. 3392–3400.

  51. Zhuravleva, N., Reznik, A., Kiesewetter, D., Stolpner, A., and Khripunov, A., J. Phys. Conf. Ser., 2018, vol. 1124, no. 3, p. 031008. https://doi.org/10.1088/1742-6596/1124/3/031008

    Article  CAS  Google Scholar 

  52. Islam, N., Li, S., Ren, G., Zuo, Y., Warzywoda, J., Wang, S., and Zhaoyang, F., Nano Micro Lett., 2018, vol. 10, p. 9. https://doi.org/10.1007/s40820-017-0162-4

    Article  CAS  Google Scholar 

  53. Bakhman, M., Petrukhin, I.Yu., Butenko, I.E., Dutka, K.V., and Gromovykh, P.S., Evraz. Nauchn. Ob”ed., 2018, no. 6–2 (40), pp. 61–65.

    Google Scholar 

  54. Chawla, P., Bajaj, I., Survase, S., and Singhal, R., Food Technol. Biotechnol., 2009, vol. 47, no. 2, pр. 107–124.

  55. Schramm, M. and Hestrin, S., Microbiology, 1954, vol. 11, pр. 123–129.

  56. Lu, Z., Zhang, Y., Chi, Y., Xu, N., Yao, W., and Sun, B., World J. Microbiol. Biotechnol., 2011, vol. 27, pр. 2281–2285.

  57. Carreira, P., Mendes, J.A., Trovatti, E., Serafim, L.S., Freire, C.S., Silvestre, A.J., and Neto, C.P., Bioresour. Technol., 2011, vol. 102, no. 15, pр. 7354–7360.

  58. Vazquez, A., Foresti, M.L., Cerrutti, P., and Galvagno, M., J. Polym. Environ., 2013, vol. 21, pр. 545–554.

  59. Skiba, E.A., Budaeva, V.V., Ovchinnikova, E.V., Gladysheva, E.K., Kashcheyeva, E.I., Pavlov, I.N., and Sakovich, G.V., Chem. Eng. J., 2020, vol. 383, p. 123128. https://doi.org/10.1016/j.cej.2019.123128

    Article  CAS  Google Scholar 

  60. Bogatyreva, A.O., Optimization of the Conditions for the Biosynthesis of Bacterial Cellulose and the Production of Biocomposite Materials with Antibacterial Properties on its Basis, Cand. Sci. (Biol.) Dissertation, Saransk, Ogarev Natl. Res. Mordovian State Univ., 2021.

  61. Yassine, F., Bassil, N., Flouty, R., Chokr, A., Samrani, A.E., Boiteux, G., and Tahchi, M.E., Carbohydr. Polym., 2016, vol. 146, pр. 282–291.

  62. Coban, E.P. and Biyik, H., Afr. J. Microbiol. Res., 2011, vol. 5, no. 9, pр. 1037–1045.

  63. Lee, K.Y., Buldum, G., Mantalaris, A., and Bismarck, A., Macromol. Bioscience, 2014, vol. 14, pр. 10–32.

  64. Reiniati, I., Hrymak, A.N., and Margaritis, A., Crit. Rev. Biotechnol., 2016, vol. 36, pр. 1–12.

  65. Son, H.J., Heo, M.S., Kim, Y.G., and Lee, S.J., Biotechnol. Appl. Biochem., 2001, vol. 33, pр. 1–5.

  66. Fan, M.H. and Gromovykh, T.I., in Living Systems and Biological Safety of the Population: Proc. IX Int. Sci. Conf. of Students and Young Scientists, 2011, pp. 24–26.

  67. Hwang, J.W., Yang, Y.K., Hwang, J.K., Pyun, Y.R., and Kim, Y.S., J. Biosci. Bioeng, 1999, vol. 88, pр. 183–188.

  68. Bae, S. and Shoda, M., Biotechnol Bioeng, 2005, vol. 90, pр. 20–28.

  69. Cielecka, I., Ryngajłło, M., and Bielecki, S., Appl. Sci., 2020, vol. 10, no. 11, p. 3850. https://doi.org/10.3390/app10113850

    Article  CAS  Google Scholar 

  70. Bayrakdar, T., Demirbağ, D., and Üstün-Aytekin, Ö., Cellul. Chem. Technol., 2017, vol. 51, pр. 737–743.

  71. Hornung, M., Ludwig, M., and Schmauder, H.P., Eng. Life Sci., 2007, vol. 7, no. 1, pр. 35–41.

  72. Kim, Y.-J., Kim, J.-N., Wee, Y.-J., Park, D.-H., and Ryu, H.-W., Appl. Biochem. Biotechnol., 2007, vol. 136–140, pр. 529–537.

  73. Shi, Z., Zhang, Y., Phillips, G.O., and Yang, G., Food Hydrocoll., 2014, vol. 35, pp. 539–545.

    Article  CAS  Google Scholar 

  74. Sitnikova, A.E., Shavyrkina, N.A., Budaeva, V.V., Korchagina, A.A., and Bychin, N.V., Yuzhno-Sib. Nauchn. Vestn., 2021, no. 2 (36), pp. 132–138.

    Google Scholar 

  75. Jung, J.Y., Khan, T., Park, J.K., and Chang, H.N., Korean J. Chem. Eng., 2007, vol. 24, no. 2, pp. 265–271.

    Article  CAS  Google Scholar 

  76. Gea, S., Pasaribu, K.M., Sebayang, K., Julianti, E., Aisyah Amaturahim, S., Rahayu, S.U., and Hutapea, Y.A., AIP Conf. Proc., 2018, p. 020064. https://doi.org/10.1063/1.5082469

Download references

Funding

This work was supported by regular institutional funding, and no additional grants were obtained.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to manuscript preparation and participated in the discussions.

Corresponding author

Correspondence to E. A. Rogova.

Ethics declarations

This article does not contain any studies involving patients or animals as test objects. Informed consent was not required for this article. No conflict of interest was declared by the authors.

Additional information

Publisher's Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rogova, E.A., Alashkevich, Y.D., Kozhukhov, V.A. et al. State and Prospects of Improving the Methods of Production and Use of Bacterial Cellulose (A Review). Russ J Bioorg Chem 49, 1536–1552 (2023). https://doi.org/10.1134/S1068162023070841

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1068162023070841

Keywords:

Navigation