Log in

On the Possibility of Quantitative Determination of Lignin and Cellulose in Plant Materials Using IR Spectroscopy

  • Published:
Russian Journal of Bioorganic Chemistry Aims and scope Submit manuscript

Abstract

A methodical approach to quantitative determination of lignin and cellulose in plant materials by mid-infrared FT-IR spectroscopy using the KBr tablet technique was proposed. For the prepared model binary mixtures of pure cellulose and lignin, a direct correlation was established between the concentration and intensity of the analytical absorption bands of lignin (1508–1512 cm–1) and cellulose (1059–1061 cm–1). Based on the obtained intensity–concentration plots, formulas for calculating the lignin and cellulose contents were derived. The proposed method was tested on a wide range of plant biomass samples, including 9 wood samples and 13 samples of agrowaste materials. A good suitability of the method for the quantitative determination of lignin was shown; the experimental results agree with the literature data within 1%. However, the proposed method was not suitable for the determination of cellulose, since it did not take into account the contribution from hemicellulose and extractive substances to the absorption band at 1059–1061 cm–1, which led to strongly overestimated results from the cellulose content determination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

DATA AVAILABILITY

The data that support the findings of this study are available from the corresponding author upon reasonable request.

REFERENCES

  1. Moore, A.K. and Owen, N.L., Appl. Spectrosc. Rev., 2001, vol. 36, no. 1, pp. 65–86. https://doi.org/10.1081/ASR-100103090

    Article  CAS  Google Scholar 

  2. Pozhidaev, V.M., Sergeeva, Y.E., Malakhov, S.N., and Yatsishina, E.B., J. Anal. Chem., 2021, vol. 76, no. 5, pp. 573–577. https://doi.org/10.1134/S1061934821050142

    Article  CAS  Google Scholar 

  3. Zhao, P., Li, Z.-Y., and Wang, C.-K., J. Spectrosc., 2021, Article ID: 6088435. https://doi.org/10.1155/2021/6088435

  4. Traoré, M., Kaal, J., and Martínez Cortizas, A., Wood Sci. Technol., 2018, vol. 52, no. 2, pp. 487–504. https://doi.org/10.1007/s00226-017-0967-9

    Article  CAS  PubMed  Google Scholar 

  5. Ozgenc, O., Durmaz, S., Hakki Boyaci, I., and Eksi-Kocak, H., Drewno, 2018, vol. 61, no. 201, pp. 91–105. https://doi.org/10.12841/wood.1644-3985.247.02

    Article  Google Scholar 

  6. Derkacheva, O. and Sukhov, D., Macromol. Symp., 2008, vol. 265, no. 1, pp. 61–68. https://doi.org/10.1002/masy.200850507

    Article  CAS  Google Scholar 

  7. Traoré, M., Kaal, J., and Martínez Cortizas, A., Spectrochim. Acta, Part A: Mol. Biomol. Spectrosc., 2016, no. 153, pp. 63–70. https://doi.org/10.1016/j.saa.2015.07.108

    Article  CAS  Google Scholar 

  8. Fougere, D., Nanda, S., Clarke, K., Kozinski, J.A., and Li, K., Biomass Bioenergy, 2016, no. 91, pp. 56–68. https://doi.org/10.1016/j.biombioe.2016.03.027

    Article  CAS  Google Scholar 

  9. Somerville, C., Youngs, H., Taylor, C., Davis, S.C., and Long, S.P., Science, 2010, vol. 329, no. 5993, pp. 790–792. https://doi.org/10.1126/science.1189268

    Article  CAS  PubMed  Google Scholar 

  10. Wang, H., Pu, Y., Ragauskas, A., and Yang, B., Bioresour. Technol., 2018, vol. 217, pp. 449–461. https://doi.org/10.1016/j.biortech.2018.09.072

    Article  CAS  Google Scholar 

  11. Long, H., Li, X., Wang, H., and Jia, J., Renewable Sustain. Energy Rev., 2013, no. 26, pp. 344–352. https://doi.org/10.1016/j.rser.2013.05.035

    Article  Google Scholar 

  12. Limayem, A. and Ricke, S.C., Prog. Energy Combust. Sci., 2012, vol. 38, no. 4, pp. 449–467. https://doi.org/10.1016/j.pecs.2012.03.002

    Article  CAS  Google Scholar 

  13. Nanda, S., Mohammad, J., Reddy, S.N., Kozinski, J.A., and Dalai, A.K., Biomass Convers. Biorefin., 2013, vol. 4, no. 2, pp. 157–191. https://doi.org/10.1007/s13399-013-0097-z

    Article  CAS  Google Scholar 

  14. Volynets, B., Ein-Mozaffari, F., and Dahman, Y., Green Process. Synth., 2017, vol. 6, no. 1, pp. 1–22. https://doi.org/10.1515/gps-2016-0017

    Article  CAS  Google Scholar 

  15. Vallejo, M., Cordeiro, R., Dias, P.A.N., Moura, C., Henriques, M., Seabra, I.J., Malça, C.M., and Morouço, P., Bioresour. Bioprocess., 2021, vol. 8, no. 1, Article ID: 25. https://doi.org/10.1186/s40643-021-00377-3

  16. Spiridon, I. and Popa, V.I., in Monomers, Polymers, and Composites from Renewable Resources, Belgacem, M.N. and Gandini, A., Eds., Amsterdam: Elsevier, 2008, pp. 289–304. https://doi.org/10.1016/B978-0-08-045316-3.00013-2

  17. Qaseem, M.F., Shaheen, H., and Wu, A.-M., Renewable Sustainable Energy Rev., 2021, vol. 144, no. 7, Article ID: 110996. https://doi.org/10.1016/j.rser.2021.110996

  18. Kabbour, M. and Luque, R., Biomass, Biofuels, Biochem., 2020, pp. 283–297. https://doi.org/10.1016/B978-0-444-64307-0.00010-X

  19. Zobiole, L.H.S., dos Santos, W.D., Bonini, E., Ferrarese-Filho, O., Kremer, R.J., de Oliveira, R.S., and Constantin, J., in Lignin: Properties and Applications in Biotechnology and Bioenergy, Patterson, R.J., Ed., New York: Nova Science, 2012, pp. 419–435.

  20. Tian, X., Fang, Z., Smith, R.L., Wu, Z., and Liu, M., in Production of Biofuels and Chemicals from Lignin, Fang, Z. and Smith, R., Eds., Singapore: Springer, 2016, pp. 3–34. https://doi.org/10.1007/978-981-10-1965-4_1

  21. Kai, D., Tan, M.J., Chee, P.L., Chua, Y.K., Yap, Y.L., and Loh, X.J., Green Chem., 2016, vol. 18, no. 5, pp. 1175– 1200. https://doi.org/10.1039/c5gc02616d

    Article  CAS  Google Scholar 

  22. Wagle, A., Angove, M.J., Mahara, A., Wagle, A., Mainali, B., Martins, M., Goldbeck, R., and Raj Paudel, S., Sustain. Energy Technol. Assess., 2022, vol. 49, Article ID:101702. https://doi.org/10.1016/j.seta.2021.101702

  23. Garlapati, V.K., Chandel, A.K., Kumar, S.P.J., Sharma, S., Sevda, S., Ingle, A.P., and Pant, D., Renew. Sustain. Energy Rev., 2020, vol. 130, Article ID: 109977. https://doi.org/10.1016/j.rser.2020.109977

  24. Ragauskas, A.J., Williams, C.K., Davison, B.H., Britovsek, G., Cairney, J., Eckert, C.A., Frederick, W.J.Jr., Hallett, J.P., Leak, D.J., Liotta, C.L., Mielenz, J.R., Murphy, R., Templer, R., and Tschaplinski, T., Science, 2006, vol. 311, pp. 484–489. https://doi.org/10.1126/science.1114736

    Article  CAS  PubMed  Google Scholar 

  25. T222 Om-02: Acid-Insoluble Lignin in Wood and Pulp, TAPPI Test Methods, 2006.

  26. Obolenskaya, A.V., El’nitskaya, Z.P., and Leonovich, A.A., Laboratory Work on the Chemistry of Wood and Cellulose, Moscow: Ekologiya, 1991.

  27. Castillo, R.P., Peña-Farfal, C., Neira, Y., and Freer, J., in Fourier Transform Infrared Spectroscopy (FTIR): Methods, Analysis, and Research Insights, Moore, E., Ed., New York: Nova Science, 2016, pp. 33–66.

  28. Karklin’, V.B., Chem. Natl. Compd., 1981, vol. 17, no. 6, pp. 566–570. https://doi.org/10.1007/BF00574378

    Article  Google Scholar 

  29. Derkacheva, O.Yu. and Tsypkin, D.O., J. Appl. Spectrosc., 2018, vol. 84, no. 6, pp. 1066–1071. https://doi.org/10.1007/s10812-018-0588-6

    Article  CAS  Google Scholar 

  30. Afanas’ev, N.I., Lichutina, T.F., Gusakova, M.A., Prokshin, G.F., Vishnyakova, A.P., Sukhov, D.A., and Derkacheva, O.Yu., Russ. J. Appl. Chem., 2006, vol. 79, no. 10, pp. 1686–1689. https://doi.org/10.1134/S1070427206100260

    Article  CAS  Google Scholar 

  31. Fiskari, J., Derkacheva, O., Kulomaa, T., and Sukhov, D., Cellul. Chem. Technol., 2016, vol. 50, no. 2, pp. 213–217.

    CAS  Google Scholar 

  32. Derkacheva, O.Yu., Sukhov, D.A., and Fedorov, A.V., Vestn. Tver. Gos. Univ., Ser. Khim., 2017, no. 1, pp. 64–71.

  33. Fiskari, J., Derkacheva, O., and Kulomaa, T., Cellul. Chem. Technol., 2021, vol. 55, nos. 3–4, pp. 263–270. https://doi.org/10.35812/cellulosechemtechnol.2021.55.26

    Article  CAS  Google Scholar 

  34. Pandey, K.K., J. Appl. Polym. Sci., 1999, vol. 71, no. 12, pp. 1969–1975. https://doi.org/10.1002/(sici)1097-4628(19990321)71:12<1969::aid-app6>3.0.co;2-d

    Article  CAS  Google Scholar 

  35. Xu, F., Yu, J., Tesso, T., Dowell, F., and Wang, D., Appl. Energy, 2013, vol. 104, pp. 801–809. https://doi.org/10.1016/j.apenergy.2012.12.019

    Article  CAS  Google Scholar 

  36. Sills, D.L. and Gossett, J.M., Biotechnol. Bioeng., 2012, vol. 109, no. 2, pp. 353–362. https://doi.org/10.1002/bit.23314

    Article  CAS  PubMed  Google Scholar 

  37. Raspolli Galletti, A.M., D’Alessio, A., Licursi, D., Antonetti, C., Valentini, G., Galia, A., and Nassi O. Di Nasso, N., J. Spectrosc., 2015, Article ID: 719042. https://doi.org/10.1155/2015/719042

  38. Vârban, R., Crișan, I., Vârban, D., Ona, A., Olar, L., Stoie, A., and Ștefan, R., Appl. Sci., 2021, vol. 11, no. 18, Article ID: 8570. https://doi.org/10.3390/app11188570

  39. Rammal, A., Perrin, E., Vrabie, V., Bertrand, I., and Chabbert, B., J. Chemom., 2017, vol. 31, no. 2, p. e2865. https://doi.org/10.1002/cem.2865

  40. Kostryukov, S.G., Petrov, P.S., Kalyazin, V.A., Masterova, Y.Y., Tezikova, V.S., Khluchina, N.A., Labzina, L.Y., and Alalvan, D.K., Polym. Sci., Ser. B, 2021, vol. 63, no. 5, pp. 544–552. https://doi.org/10.1134/S1560090421050067

    Article  CAS  Google Scholar 

  41. Kumar, B., Bhardwaj, N., Agrawal, K., Chaturvedi, V., and Verma, P., Fuel Process. Technol., 2020, vol. 199, p. 106244. https://doi.org/10.1016/j.fuproc.2019.106244

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by regular institutional funding, and no additional grants were obtained.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by KSG, MNA, MYY, MKB, KIA, SKV, PAA and KNA. Conceptualization: KSG; Methodology: MYY; Writing—original draft preparation: KSG and MYY.

All authors read and approved the final manuscript.

Corresponding author

Correspondence to S. G. Kostryukov.

Ethics declarations

This article does not contain any studies involving patients or animals as test objects. Informed consent was not required for this article. No conflict of interest was declared by the authors.

Additional information

Publisher's Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kostryukov, S.G., Malov, N.A., Masterova, Y.Y. et al. On the Possibility of Quantitative Determination of Lignin and Cellulose in Plant Materials Using IR Spectroscopy. Russ J Bioorg Chem 49, 1628–1635 (2023). https://doi.org/10.1134/S106816202307083X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106816202307083X

Keywords:

Navigation