Log in

Sulfation of Abies Ethanol Lignin by Complexes of Sulfur Trioxide with 1,4-Dioxane and Pyridine

  • PLANT BIOPOLYMERS
  • Published:
Russian Journal of Bioorganic Chemistry Aims and scope Submit manuscript

Abstract—

An optimization of sulfation of abies ethanol lignin by complexes of sulfuric anhydride with pyridine and 1,4-dioxane has been performed. Conditions for the implementation of the sulfation of abies ethanol lignin by complexes of sulfur trioxide with 1,4-dioxane and pyridine that provide a high sulfur content (12.0–12.6%) have been experimentally found. It has been shown that a high sulfur content of 12.0–13.5% (mass) in the resulting ethanol lignin sulfate is achieved at a chlorosulfonic acid to ethanol lignin ratio of 20.22 : 1 mmol : g and a duration of the process of 60–120 min and does not depend on the origin of the sulfation complex. The structure and the composition of water-soluble sulfated ethanol lignin have been confirmed by FTIR spectroscopy, gel-permeation chromatography, and elemental analysis. The IR spectra of sulfated abies ethanol lignin, as compared with the IR spectra of initial ethanol lignin, have absorption bands in the regions of 1270–1260, 1220–1212, and 861–803 cm–1, which correspond to the vibrations of sulfate groups. Sulfated ethanol lignin from abies wood has a low degree of polydispersity as compared with initial lignin. In particular, an increase in Mw from ~1.5 to ~3.4 kDa in lignin sulfated for 30 min and a decrease in polydispersity from 2.59 to 1.22 in comparison with the initial ethanol lignin were observed. As the time of sulfation increased, the profile of the curve of the molecular weight distribution shifted toward the high-molecular-weight region with a simultaneous increase in polydispersity to 1.5 and in the mean molecular weight to ~4.3 kDa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Liu, Q., Luo, L., and Zheng, L., Lignins: biosynthesis and biological functions in plants, Int. J. Mol. Sci., 2018, vol. 19, no. 2, pp. 335–341.  https://doi.org/10.3390/ijms19020335

    Article  CAS  PubMed Central  Google Scholar 

  2. Lourenço, A. and Pereira, H., Lignin—Trends and Applications, IntechOpen, 2018, pp. 65–98.  https://doi.org/10.5772/intechopen.71208

    Book  Google Scholar 

  3. Brauns, F. and Hibbert, H., Studies on lignin and related compounds: XII. Methanol lignin, Can. J. Res., 1935, vol. 13b, no. 1, pp. 28–34. https://doi.org/10.1139/cjr35b-003

    Article  CAS  Google Scholar 

  4. Tribot, A., Amer, G., Alio, M.A., Baynast, H., Delattre, C., Pons, A., Mathias, J.-D., Callois, J.-M., Vial, C., Michaud, P., and Dussap, C.-G., Wood-lignin: Supply, extraction processes and use as bio-based material, Eur. Polymer J., 2019, vol. 112, pp. 228–240. https://doi.org/10.1016/j.eurpolymj.2019.01.007

    Article  CAS  Google Scholar 

  5. Danish, M. and Ahmad, T., A review on utilization of wood biomass as a sustainable precursor for activated carbon production and application, Renewable Sustainable Energy Rev., 2018, vol. 87, pp. 1–21.  https://doi.org/10.1016/j.rser.2018.02.003

    Article  CAS  Google Scholar 

  6. Spiridon, I., Biological and pharmaceutical applications of lignin and its derivatives: A mini-review, Cellulose Chem. Technol., 2018, vol. 52, nos. 7–8, pp. 543–550.

    CAS  Google Scholar 

  7. Witzler, M., Alzagameem, A., Bergs, M., Khaldi-Hansen, B.E., Klein, S.E., Hielscher, D., and Schulze, M., Lignin-derived biomaterials for drug release and tissue engineering, Molecules, 2018, vol. 23, no. 8, p. 1885. https://doi.org/10.3390/molecules23081885

    Article  CAS  PubMed Central  Google Scholar 

  8. Vinardell, M.P. and Mitjans, M., Lignins and their derivatives with beneficial effects on human health, Int. J. Mol. Sci., 2017, vol. 18, no. 6, p. 1219.  https://doi.org/10.3390/ijms18061219

    Article  CAS  PubMed Central  Google Scholar 

  9. Andrei, G., Lisco, A., Vanpouille, C., Introini, A., Balestra, E., van den Oord, J., Cihlar, T., Perno, C.F., Snoeck, R., Margolis, L., and Balzarini, J., Topical tenofovir, a microbicide effective against HIV, inhibits herpes simplex virus-2 replication, Cell Host Microbe, 2011, vol. 10, pp. 379–389. https://doi.org/10.1016/j.chom.2011.08.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Raghuraman, A., Tiwari, V., Zhao, Q., Shukla, D., Debnath, A.K., and Desai, U.R., Viral inhibition studies on sulfated lignin, a chemically modified biopolymer and a potential mimic of heparan sulfate, Biomacromolecules, 2007, vol. 8, pp. 1759–1763. https://doi.org/10.1021/bm0701651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Saluja, B., Thakkar, J.N., Li, H., Desai, U.R., and Sakagami, M., Novel low molecular weight lignins as potential anti-emphysema agents: In vitro triple inhibitory activity against elastase, oxidation and inflammation, Pulmonary Pharmacol. Ther., 2013, vol. 26, pp. 296–304. https://doi.org/10.1016/j.pupt.2012.12.009

    Article  CAS  Google Scholar 

  12. Barapatre, A., Aadil, K.R., Tiwary, B.N., and Jha, H., In vitro antioxidant and antidiabetic activities of biomodified lignin from Acacia nilotica wood, Int. J. Biol. Macromol., 2015, vol. 75, pp. 81–89. https://doi.org/10.1016/j.ijbiomac.2015.01.012

    Article  CAS  PubMed  Google Scholar 

  13. Hasegawa, Y., Kadota, Y., Hasegawa, C., and Kawiminami, S., Lignosulfonic acid-induced inhibition of intestinal glucose absorption, J. Nutrit. Sci. Vitaminol., 2015, vol. 61, pp. 449–454. https://doi.org/10.3177/jnsv.61.449

    Article  CAS  Google Scholar 

  14. Pan, X., Kadla, J.F., Ehara, K., Gilkes, N., and Saddler, J.N., Organosolv ethanol lignin from hybrid poplar as a radical scavenger: relationship between lignin structure, extraction conditions, and antioxidant activity, J. Agricult. Food Chem., 2006, vol. 54, pp. 5806–5813. https://doi.org/10.1021/jf0605392

    Article  CAS  Google Scholar 

  15. Qazi, S.S., Li, D., Briens, C., Berruti, F., and Abou-Zaid, M.M., Antioxidant activity of the lignins derived from fluidized-bed fast pyrolysis, Molecules, 2017, vol. 22, E372.  https://doi.org/10.3390/molecules22030372

    Article  CAS  PubMed  Google Scholar 

  16. Sun, S.N., Cao, X.F., Xu, F., Sun, R.C., and Jones, G.L., Structural features and antioxidant activities of lignins from steam-exploded bamboo (Phyllostachys pubescens), J. Agricult. Food Chem., 2014, vol. 62, pp. 5939–5947. https://doi.org/10.1021/jf5023093

    Article  CAS  Google Scholar 

  17. Barapatre, A., Meena, A.S., Mekala, S., Das, A., and Jha, H., In vitro evaluation of antioxidant and cytotoxic activities of lignin fractions extracted from Acacia nilotica, Int. J. Biol. Macromol., 2016, vol. 86, pp. 443–453. https://doi.org/10.1016/j.ijbiomac.2016.01.109

    Article  CAS  PubMed  Google Scholar 

  18. Wang, Q., Mu, H., Zhang, L., Dong, D., Zhang, W., and Duan, J., Characterization of two water-soluble lignin metabolites with antiproliferative activities from Inonotus obliquus, Int. J. Biol. Macromol., 2015, vol. 74, pp. 507–514. https://doi.org/10.1016/j.ijbiomac.2014.12.044

    Article  CAS  PubMed  Google Scholar 

  19. Frangville, C., Rutkevicius, M., Richter, A.P., Velev, O.D., Stoyanov, S.D., and Paunov, V.N., Fabrication of environmentally biodegradable lignin nanoparticles, Chemphyschem, 2012, vol. 13, pp. 4235–4243. https://doi.org/10.1002/cphc.201200537

    Article  CAS  PubMed  Google Scholar 

  20. Richter, A., Brown, J.S., Bharti, B., Wang, A., Gangwal, S., Houck, K., Cohen Hubal, E.A., Paunov, V.N., Stoyanov, S.D., and Velev, O.D., An environmentally benign antimicrobial nanoparticle based on a silver-infused lignin core, Nat. Nanotechnol., 2015, vol. 10, pp. 817–823. https://doi.org/10.1038/nnano.2015.141

    Article  CAS  PubMed  Google Scholar 

  21. Prinsen, P., Narani, A., Hartog, A.F., Wever, R., and Rothenberg, G., Dissolving lignin in water through enzymatic sulfation with aryl sulfotransferase, ChemSusChem, 2017, vol. 10, no. 10, pp. 2267–2273.  https://doi.org/10.1002/cssc.201700376

    Article  CAS  PubMed  Google Scholar 

  22. Liang, A., Thakkar, J.N., Hindle, M., and Desai, U.R., Dynamic affinity chromatography in the separation of sulfated lignins binding to thrombin, J. Chromatogr. B, 2012, vol. 908, pp. 45–51. https://doi.org/10.1016/j.jchromb.2012.09.036

    Article  CAS  Google Scholar 

  23. Henry, B.L., Thakkar, J.N., Liang, A., and Desai, U.R., Sulfated, low molecular weight lignins inhibit a select group of heparin-binding serine proteases, Biochem. Biophys. Res. Commun., 2012, vol. 417, no. 1, pp. 382–386. https://doi.org/10.1016/j.bbrc.2011.11.122

    Article  CAS  PubMed  Google Scholar 

  24. Henry, B.L. and Desai, U.R., Sulfated low molecular weight lignins, allosteric inhibitors of coagulation proteinases via the heparin binding site, significantly alter the active site of thrombin and factor Xa compared to heparin, Thrombosis Res., 2014, vol. 134, no. 5, pp. 1123–1129.  https://doi.org/10.1016/j.thromres.2014.08.024

    Article  CAS  Google Scholar 

  25. Abdel-Aziz, M.H., Mosier, P.D., and Desai, U.R., Identification of the site of binding of sulfated, low molecular weight lignins on thrombin, Biochem. Biophys. Res. Commun., 2011, vol. 413, no. 2, pp. 348–352. https://doi.org/10.1016/j.bbrc.2011.08.102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Raghuraman, A., Tiwari, V., Zhao, Q., Shukla, D., Debnath, A.K., and Desai, U.R., Viral inhibition studies on sulfated lignin, a chemically modified biopolymer and a potential mimic of heparan sulfate, Biomacromolecules, 2007, vol. 8, pp. 1759–1763. https://doi.org/10.1021/bm0701651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Thakkar, J.N., Discovery of lignin sulfate as a potent ingibitor of HSV entry cells, Theses and Dissertations Graduate School, Virginia Commonwealth University, 2006.

    Google Scholar 

  28. Raghuraman, A., Tiwari, V., Thakkar, J.N., Gunnarsson, G.T., Shukla, D., Hindle, M., and Desai, U.R., Structural characterization of a serendipitously discovered bioactive macromolecule, lignin sulfate, Biomacromolecules, 2005, vol. 6, pp. 2822–2832. https://doi.org/10.1021/bm0503064

    Article  CAS  PubMed  Google Scholar 

  29. Dzhil’bert, E.E., Sul’firovanie organicheskikh soedinenii (Sulfonation of Organic Compounds), Moscow, 1969.

  30. Vasil’eva, N.Yu., Levdansky, V.A., Skvortsova, G.P., Kazachenko, A.S., and Kuznetsov, B.N., Method for sulfation of organosolvent lignin, RF Patent no. 2641758, 2018.

  31. Kuznetsov, B.N., Vasilyeva, N.Yu., Kazachenko, A.S., Skvortsova, G.P., Levdansky, V.A., and Lutoshkin, M.A., Development of the method of abies wood ethanollignin sulfonation using sulfamic acid, Zh. Sib. Fed. Univ., Ser. Khim., 2018, vol. 1, no. 11, pp. 22–130. https://doi.org/10.17516/1998-2836-0063

    Article  Google Scholar 

  32. Quesada-Medina, J., López-Cremades, F.J., and Olivares-Carrillo, P., Organosolv extraction of lignin from hydrolyzed almond shells and application of the δ-value theory, Bioresour. Technol., 2010, vol. 101, pp. 8252–8260. https://doi.org/10.1016/j.biortech.2010.06.011

    Article  CAS  PubMed  Google Scholar 

  33. Cheronis, N.D. and Ma, T.S., Mikro- i polumikrometody organicheskogo funktsional’nogo analiza (Micro- and Semi-Micromethods of Organic Functional Analysis), Moscow, 1973.

    Google Scholar 

  34. Sudakova, I.G., Garyntseva, N.V., Yatsenkova, O.V., and Kuznetsov, B.N., Optimization of aspen wood delignification by H2O2 with sulfuric acid catalyst, J. Sib. Fed. Univ., Ser. Khim., 2013, vol. 6, pp. 76–84.

    Google Scholar 

  35. Calvo-Flores, F.G., Dobado, J.A., Isac-García, J., and Martín-Martínez, F.J., Lignin and Lignans as Renewable Raw Materials: Chemistry, Technology and Applications, Chichester: Wiley, 2015.

    Book  Google Scholar 

  36. Gosudarstvennaya farmakopeya Rossiiskoi Federatsii (State Pharmacopoeia of the Russian Federation), Moscow, 2008, vol. 1. 14th ed.

  37. Zakis, G.F., Funktsional’nyi analiz ligninov i ikh proizvodnykh (Functional Analysis of Lignins and Their Derivatives), Riga, 1987.

    Google Scholar 

  38. Khergert, G.L., IK-spektry lignina (IR Spectra of Lignin), Moscow, 1975.

    Google Scholar 

  39. Bellamy, L.J., Advances in Infrared Group Frequencies, London, 1968.

    Google Scholar 

  40. Roeges, N.P.G., A Guide to the Complete Interpretation of Infrared Spectra of Organic Structures, Wiley, 1995.

    Google Scholar 

Download references

ACKNOWLEDGMENTS

In the work, the devices of the Krasnoyarsk Regional Center of Collective Use (Krasnoyarsk Science Center, Siberian Branch, Russian Academy of Sciences) were used.

Funding

The study was supported by the Russian Foundation for Basic Research, the Government of Krasnoyarsk krai, and the Krasnoyarsk Regional Science Foundation in the framework of the project “Modification of wood lignins for the production of promising pharmacologically active and light-sensitive water-soluble polymers” (project no. 18-43-243016 р_mol_а).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Kazachenko.

Ethics declarations

COMPLIANCE WITH ETHICAL STANDARDS

This article does not contain any studies involving animals or human participants performed by any of the authors.

Conflict of Interests

The authors declare that they have no conflicts of interest.

ADDITIONAL INFORMATION

Malyar Yurii Nikolaevich, Cand. Sci. (Chem.), Senior Researcher of the Laboratory of Catalytic Transformations of Renewable Resources, Assoc. Prof. of the Department of Organic and Analytical Chemistry; e-mail: leo_lion_leo@mail.ru.

Vasil’eva Natal’ya Yur’evna, Cand. Sci. (Chem.), Senior Researcher of the Laboratory of Chemistry of Natural Organic Raw Materials, Assoc. Prof. of the Department of Organic and Analytical Chemistry; e-mail: leo_lion_leo@mail.ru.

Kazachenko Aleksandr Sergeevich, Cand. Sci. (Chem.), Researcher of the Laboratory of Chemistry of Natural Organic Raw Materials; e-mail: leo_lion_leo@mail.ru.

Skvortsova Galina Pavlovna, Researcher of the Laboratory of Chemistry of Natural Organic Raw Materials; e‑mail: leo_lion_leo@mail.ru.

Korol’kova Irina Vladimirovna, Junior Researcher of the Laboratory of Molecular Spectroscopy and Analysis; e‑mail: leo_lion_leo@mail.ru.

Kuznetsova Svetlana Alekseevna, Dr. Sci. (Chem.), Chief Researcher of the Laboratory of Chemistry of Natural Organic Raw Materials; e-mail: leo_lion_leo@mail.ru.

Additional information

Translated by S. Sidorova

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malyar, Y.N., Vasil’yeva, N.Y., Kazachenko, A.S. et al. Sulfation of Abies Ethanol Lignin by Complexes of Sulfur Trioxide with 1,4-Dioxane and Pyridine. Russ J Bioorg Chem 47, 1368–1375 (2021). https://doi.org/10.1134/S1068162021070104

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1068162021070104

Keywords:

Navigation