Log in

Comparative Characteristics of the Chemical Composition of Some Brown Algae from the White and Yellow Seas

  • PLANT BIOPOLYMERS
  • Published:
Russian Journal of Bioorganic Chemistry Aims and scope Submit manuscript

Abstract

Brown algae represent a valuable source of various biologically active compounds. Their accumulation is influenced by many environmental factors. The purpose of this study was a comparison of the total chemical composition of brown algae from the White and Yellow Seas to substantiate the possibility of their use for production of new pharmaceutical substances. Using a scheme, which involves consecutive supercritical fluid, acid, alkaline and water extractions, various components of brown algae have been isolated including a protein-polysaccharide complex, which, in the case of Laminaria digitata and L. saccharina, consisted of cellulose and proteins for more than 80%. FTIR spectroscopy has confirmed the qualitative composition of the complex and indicated its purity. Significant differences in the elemental and component composition affected by growing conditions of macrophytes have been revealed. Chemical compounds obtained from brown algae biomass, especially the protein–polysaccharide complex, have a high potential as a basis for new pharmacological preparations for health protection purposes. Based on the earlier obtained data, one can suppose this complex has both enterosorption and immunomodulatory activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. The State of World Fisheries and Aquaculture 2018. Meeting the Sustainable Development Goals, Rome: Food and Agriculture Organization of the United Nations, 2018.

  2. Monteiro, J.P., Rey, F., Melo, T., Moreira, A.S.P., Arbona, J.F., Skjermo, J., Forbord, S., Funderud, J., Raposo, D., Kerrison, P.D., Perrineau, M.M., Gachon, C., Domingues, P., Calado, R., and Domingues, MR., The unique lipidomic signatures of Saccharina latissima can be used to pinpoint their geographic origin, Biomolecules, 2020, vol. 10, no. 1, pp. 1–17. https://doi.org/10.3390/biom10010107

    Article  CAS  Google Scholar 

  3. Anastyuk, S.D., Shevchenko, N.M., Zvyagintseva, T.N., and Ermakova, S.P., The comparison of structure and anticancer activity in vitro of polysaccharides from brown algae Alaria marginata and A. angusta, Carbohydr. Polymers, 2016, vol. 153, pp. 258–265. https://doi.org/10.1016/j.carbpol.2016.07.103

    Article  CAS  Google Scholar 

  4. Wu, G.J., Shiu, S.M., Hsieh, M.C., and Tsai, G.J., Anti-inflammatory activity of a sulfated polysaccharide from the brown alga Sargassum cristaefolium, Food Hydrocolloids, 2016, vol. 53, pp. 16–23. https://doi.org/10.1016/j.foodhyd.2015.01.019

    Article  CAS  Google Scholar 

  5. Manlusoc, J.K.T., Hsieh, C.L., Hsieh, C.Y., Salac, E.S.N., Lee, Y.T., and Tsai, P.W., Pharmacologic application potentials of sulfated polysaccharide from marine algae, Polymers, 2019, vol. 11, no. 7, pp. 1–21. https://doi.org/10.3390/polym11071163

    Article  CAS  Google Scholar 

  6. Stack, J., Tobin, P.R., Gietl, A., Harnedy, P.A., Stengel, D.B., and Fitzgerald, R.J., Seasonal variation in nitrogenous components and bioactivity of protein hydrolysates from Porphyra dioica, J. Appl. Phycol., 2017, vol. 29, no. 5, pp. 2439–2450. https://doi.org/10.1007/s10811-017-1063-0

    Article  CAS  Google Scholar 

  7. Olivares-Molina, A. and Fernández, K., Comparison of different extraction techniques for obtaining extracts from brown seaweeds and their potential effects as angiotensin I-converting enzyme (ACE) inhibitors, J. Appl. Phycol., 2016, vol. 28, no. 2, pp. 1295–1302. https://doi.org/10.1007/s10811-015-0665-7

    Article  CAS  Google Scholar 

  8. Beaulieu, L., Bondu, S., Doiron, K., Rioux, L.E., and Turgeon, S.L., Characterization of antibacterial activity from protein hydrolysates of the macroalga Saccharina longicruris and identification of peptides implied in bioactivity, J. Funct. Foods, 2015, vol. 17, pp. 685–697. https://doi.org/10.1016/j.jff.2015.06.026

    Article  CAS  Google Scholar 

  9. Paniz, O.G., Pereira, C.M.P., Pacheco, B.S., Wolke, S.I., Colepicolo, P., and Orlandi, M.O., Cellulosic material obtained from Antarctic algae biomass, Cellulose, 2019, vol. 2, no. 1, pp. 1–14. https://doi.org/10.1007/s10570-019-02794-2

    Article  CAS  Google Scholar 

  10. Bogolitsyn, K.G., Kaplitsin, P.A., Parshina, A.E., Druzhinina, A.S., and Ovchinnikov, D.V., Enterosorption properties of arctic brown algae fiber, Russ. J. Appl. Chem., 2017, vol. 90, no. 11, pp. 1819–1825. https://doi.org/10.1134/S1070427217110143

    Article  CAS  Google Scholar 

  11. Bogolitsyn, K., Dobrodeeva, L., Druzhinina, A., Ovchinnikov, D., Parshina, A., and Shulgina, E., Biological activity of a polyphenolic complex of arctic brown algae, J. Appl. Phycol., 2019, vol. 31, pp. 3341–3348. https://doi.org/10.1007/s10811-019-01840-7

    Article  CAS  Google Scholar 

  12. Cian, R.E., Hernández-Chirlaque, C., Gámez-Belmonte, R., Drago, S.R., Sánchez de Medina, F., and Martínez-Augustin, O., Green alga Ulva spp. hydrolysates and their peptide fractions regulate cytokine production in splenic macrophages and lymphocytes involving the TLR4-NFκB/MAPK pathways, Mar. Drugs, 2018, vol. 16, no. 7.  https://doi.org/10.3390/md16070235

  13. Erdmann, K., Cheung, B.W.Y., and Schroder, H., The possible roles of food-derived bioactive peptides in reducing the risk of cardiovascular disease, J. Nutr. Biochem., 2008, vol. 19, no. 10, pp. 643–654.  https://doi.org/10.1016/j.jnutbio.2007.11.010

    Article  CAS  PubMed  Google Scholar 

  14. Lee, H.A., Kim, I.H., and Nam, T.J., Bioactive peptide from Pyropia yezoensis and its anti-inflammatory activities, Int. J. Mol. Med., 2015, vol. 36, no. 6, pp. 1701–1706. https://doi.org/10.3892/ijmm.2015.2386

    Article  CAS  PubMed  Google Scholar 

  15. GOST 24027.2-80. Syr’e lekarstvennoe rastitel’noe. Metody opredeleniya vlazhnosti, soderzhaniya zoly, ekstraktivnykh i dubil’nykh veshchestv, efirnogo masla (GOST 24027.2-80. Herbal Medicinal Raw Materials. Methods for Determination of Moisture Content, Ash Content, Extractives and Tannins, and Essential Oil), Moscow: Standartinform, 1980.

  16. Obluchinskaya, E.D., Comparative chemical composition of the Barents Sea brown algae, Appl. Biochem. Microbiol., 2008, vol. 44, no. 3, pp. 305–309.

    Article  CAS  Google Scholar 

  17. Obolenskaya, A.V., El’nitskaya, Z.P., and Leonovich, A.A., Laboratornye raboty po khimii drevesiny i tsellyulozy (Laboratory Work on the Chemistry of Wood and Cellulose), Moscow: Ekologiya, 1991.

  18. Bogolitsyn, K.G., Ovchinnikov, D.V., Kaplitsin, P.A., Druzhinina, A.S., Parshina, A.E., Shul’gina, E.V., Semushina, M.P., and Aleshina, L.A., Isolation and structural characterization of cellulose from arctic brown algae, Chem. Nat. Compd., 2017, vol. 53, no. 3, pp. 533–537. https://doi.org/10.1007/s10600-017-2039-7

    Article  CAS  Google Scholar 

  19. Wang, T., Jónsdóttir, R., Liu, H., Gu, L., Kristinsson, H.G., Raghavan, S., and Ólafsdóttir, G., Antioxidant capacities of phlorotannins extracted from the brown algae Fucus vesiculosus, J. Agricult. Food Chem., 2012, vol. 60, no. 23, pp. 5874–5883. https://doi.org/10.1021/jf3003653

    Article  CAS  Google Scholar 

  20. Podkorytova, A.V. and Kadnikova, I.A., Rukovodstvo po sovremennym metodam issledovanii morskikh vodoroslei, trav i produktov ikh pererabotki (Guide to Modern Methods of Research of Seaweed, Herbs, and Products of Their Processing), vol. 3: Kachestvo, bezopasnost' i metody analiza produktov iz gidrobiontov (Quality, Safety, and Methods of Analysis of Products from Aquatic Organisms), Moscow: VNIRO, 2009.

  21. GOST 26185-84. Vodorosli morskie, travy morskie i produkty ikh pererabotki. Metody analiza (Seaweed, Sea Grasses, and Products of Their Processing. Methods of Analysis), Moscow: Standartinform, 2010.

  22. Schiener, P., Black, K.D., Stanley, M.S., and Green, D.H., The seasonal variation in the chemical composition of the kelp species Laminaria digitata, Laminaria hyperborea, Saccharina latissima and Alaria esculenta, J. Appl. Phycol., 2014, vol. 27, no. 1, pp. 363–373. https://doi.org/10.1007/s10811-014-0327-1

    Article  CAS  Google Scholar 

  23. Angell, A.R., Mata, L., de Nys, R., and Paul, N.A., The protein content of seaweeds: a universal nitrogen-to-protein conversion factor of five, J. Appl. Phycol., 2016, vol. 28, no. 1, pp. 511–524. https://doi.org/10.1007/s10811-015-0650-1

    Article  CAS  Google Scholar 

  24. Tibbetts, S.M., Milley, J.E., and Lall, S.P., Nutritional quality of some wild and cultivated seaweeds: nutrient composition, total phenolic content and in vitro digestibility, J. Appl. Phycol., 2016, vol. 28, no. 6, pp. 3575–3585. https://doi.org/10.1007/s10811-016-0863-y

    Article  CAS  Google Scholar 

  25. Nielsen, M.M., Manns, D., D’Este, M., Krause-Jensen, D., Rasmussen, M.B., Larsen, M.M., Alvarado-Morales, M., Angelidaki, I., and Bruhn, A., Variation in biochemical composition of Saccharina latissima and Laminaria digitata along an estuarine salinity gradient in inner Danish waters, Algal Res., 2016, vol. 13, pp. 235–245. doi https://doi.org/10.1016/j.algal.2015.12.003

    Article  Google Scholar 

  26. Pangestuti, R. and Kim, S., Seaweed proteins, peptides, and amino acids, in Seaweed Sustainability, Elsevier, 2015, pp. 125–140. https://doi.org/10.1016/B978-0-12-418697-2/00006-4

    Book  Google Scholar 

  27. Ito, M., Koba, K., Hikihara, R., Ishimaru, M., Shibata, T., Hatate, H., and Tanaka, R., Analysis of functional components and radical scavenging activity of 21 algae species collected from the Japanese coast, Food Chem., 2018, vol. 255, pp. 147–156. https://doi.org/10.1016/j.foodchem.2018.02.070

    Article  CAS  PubMed  Google Scholar 

  28. Siddhanta, A.K., Prasad, K., Meena, R., Prasad, G., Mehta, G.K., Chhatbar, M.U., Oza, M.D., Kumar, S., and Sanandiya, N.D., Profiling of cellulose content in Indian seaweed species, Bioresour. Technol., 2009, vol. 100, no. 24, pp. 6669–6673. https://doi.org/10.1016/j.biortech.2009.07.047

    Article  CAS  PubMed  Google Scholar 

  29. Deniaud-Bouët, E., Kervarec, N., Michel, G., Tonon, T., Kloareg, B., and Hervé, C., Chemical and enzymatic fractionation of cell walls from Fucales: Insights into the structure of the extracellular matrix of brown algae, Ann. Bot., 2014, vol. 114, no. 6, pp. 1203–1216. https://doi.org/10.1093/aob/mcu096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Oh, S.Y., Yoo, I., Shin, Y., Kim, C., and Kim, Y., Crystalline structure analysis of cellulose treated with sodium hydroxide and carbon dioxide by means of X-ray diffraction and FTIR spectroscopy, Carbohydr. Res., 2005, vol. 340, pp. 2376–2391. https://doi.org/10.1016/j.carres.2005.08.007

    Article  CAS  PubMed  Google Scholar 

  31. Łabowska, M.B., Michalak, I., and Detyna, J., Methods of extraction, physicochemical properties of alginates and their applications in biomedical field—a review, Open Chem., 2019, vol. 17, no. 1, pp. 738–762.

  32. Kong, J. and Yu, S., Fourier transform infrared spectroscopic analysis of protein secondary structures, Acta Biochim. Biophys. Sin., 2007, vol. 39, no. 8, pp. 549–559. https://doi.org/10.1111/j.1745-7270.2007.00320.x

    Article  CAS  PubMed  Google Scholar 

  33. Ainane, T., Abourriche, A., and Kabbaj, M., Physico-chemical analysis by SEM-EDX and FTIR two brown algae Cytoseira tamariscifolia and Bifurcaria bifurcata, BioTechnology, 2015, vol. 11, no. 5, pp. 185–188.

    CAS  Google Scholar 

  34. Abdel-Raouf, N., Al-Enazi, N.M., Borie, M.I., Ibraheem, M., Alharbi, R.M., and Alkhulaifi, M.M., Biosynthesis of silver nanoparticles by using of the marine brown alga Padina pavonia and their characterization, Saudi J. Biol. Sci., 2018, vol. 26, no. 6, pp. 1207–1215. https://doi.org/10.1016/j.sjbs.2018.01.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Rasyida, A., Pradipta, T.R., Wicaksono, S.T., Pratiwi, V.M., and Rakhmawati, Y.W., Preliminary study of alginates extracted from brown algae (Sargassum sp.) available in Madura Island as composite based hydrogel materials, Mater. Sci. Forum., 2019, vol. 964, pp. 240–245. https://doi.org/10.4028/www.scientific.net/MSF.964.240

  36. Rodrigues, D., Freitas, A.C., Pereira, L., Rocha-Santost, A.P., Vasconcelos, M.W., Roriz, M., Rodríguez-Alcalá, L.M., Gomes, A.M.P., and Duarte, A.C., Chemical composition of red, brown and green macroalgae from Buarcos Bay in central west coast of Portugal, Food Chem., 2015, vol. 183, pp. 197–207. https://doi.org/10.1016/j.foodchem.2015.03.057

    Article  CAS  PubMed  Google Scholar 

  37. Baba, H.S., Baba, H.M.B., Kassouar, S., and Abi, A.S-M.E-A., Physicochemical analysis of cellulose from microalgae Nannochloropsis gaditana, Afr. J. Biotechnol., 2016, vol. 15, no. 24, pp. 1201–1207.  https://doi.org/10.5897/ajb2016.15321

    Article  CAS  Google Scholar 

  38. Kannan, S., FT-IR and EDS analysis of the seaweeds Sargassum wightii (brown algae) and Gracilaria corticata (red algae), Int. J. Curr. Microbiol. Appl. Sci., 2014, vol. 3, no. 4, pp. 341–351.

    Google Scholar 

Download references

ACKNOWLEDGMENTS

The study was carried out using the scientific equipment of the Core Facility Center Arktika of the Northern (Arctic) Federal University, the Federal Center for Integrated Arctic Research of the Russian Academy of Sciences, and the Korea Polar Research Institute. The authors thank colleagues from the Korea Polar Research Institute for the samples of brown algae provided and assistance within the framework of the Arctic Science Fellowship Program.

Funding

The study was carried out within the framework of the State Assignment no. 0793-2020-0005.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. G. Bogolitsyn.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Statement on the Welfare of Animals

This article does not contain any studies with animals performed by any of the authors.

ADDITIONAL INFORMATION

Bogolitsyn Konstantin Grigor’evich—Doctor Chem. Sci., Professor, Director of the Institute of Environmental Problems of the North, Head of the Department of Theoretical and Applied Chemistry, e-mail: k.bogolitsin@narfu.ru.

Parshina Anastasia Eduardovna—postgraduate student, e-mail: a.parshina@narfu.ru.

Druzhinina Anna Sergeevna—Cand. Chem. Sci., researcher, e-mail: annadruzhinina27@yandex.ru.

Shul’gina Elena Valer’evna—Cand. Chem. Sci., Head of the Laboratory, Department of Theoretical and Applied Chemistry, e-mail: e.shulgina@narfu.ru.

Additional information

Translated by N. Statsyuk

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bogolitsyn, K.G., Parshina, A.E., Druzhinina, A.S. et al. Comparative Characteristics of the Chemical Composition of Some Brown Algae from the White and Yellow Seas. Russ J Bioorg Chem 47, 1395–1403 (2021). https://doi.org/10.1134/S1068162021070025

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1068162021070025

Keywords:

Navigation